Internal
problem
ID
[11967]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
1.2.2.
Equations
Containing
Power
Functions
Problem
number
:
40
Date
solved
:
Sunday, March 30, 2025 at 09:29:43 PM
CAS
classification
:
[_rational, _Riccati]
ode:=x*diff(y(x),x) = a*x^n*y(x)^2+m*y(x)-a*b^2*x^(n+2*m); dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],x]==a*x^n*y[x]^2+m*y[x]-a*b^2*x^(n+2*m); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") m = symbols("m") n = symbols("n") y = Function("y") ode = Eq(a*b**2*x**(2*m + n) - a*x**n*y(x)**2 - m*y(x) + x*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-a*b**2*x**(2*m + n) + a*x**n*y(x)**2 + m*y(x))/x cannot be solved by the factorable group method