61.2.24 problem 24

Internal problem ID [11951]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number : 24
Date solved : Sunday, March 30, 2025 at 09:26:13 PM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=a y^{2}+b y+c x +k \end{align*}

Maple. Time used: 0.011 (sec). Leaf size: 194
ode:=diff(y(x),x) = a*y(x)^2+b*y(x)+c*x+k; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {2 \left (\frac {c}{\sqrt {a}}\right )^{{1}/{3}} \sqrt {a}\, \left (\operatorname {AiryAi}\left (1, -\frac {a \left (c x +k \right )-\frac {b^{2}}{4}}{\left (\frac {c}{\sqrt {a}}\right )^{{2}/{3}} a}\right ) c_1 +\operatorname {AiryBi}\left (1, -\frac {a \left (c x +k \right )-\frac {b^{2}}{4}}{\left (\frac {c}{\sqrt {a}}\right )^{{2}/{3}} a}\right )\right )-b \left (c_1 \operatorname {AiryAi}\left (-\frac {a \left (c x +k \right )-\frac {b^{2}}{4}}{\left (\frac {c}{\sqrt {a}}\right )^{{2}/{3}} a}\right )+\operatorname {AiryBi}\left (-\frac {a \left (c x +k \right )-\frac {b^{2}}{4}}{\left (\frac {c}{\sqrt {a}}\right )^{{2}/{3}} a}\right )\right )}{2 a \left (c_1 \operatorname {AiryAi}\left (-\frac {a \left (c x +k \right )-\frac {b^{2}}{4}}{\left (\frac {c}{\sqrt {a}}\right )^{{2}/{3}} a}\right )+\operatorname {AiryBi}\left (-\frac {a \left (c x +k \right )-\frac {b^{2}}{4}}{\left (\frac {c}{\sqrt {a}}\right )^{{2}/{3}} a}\right )\right )} \]
Mathematica. Time used: 0.271 (sec). Leaf size: 284
ode=D[y[x],x]==a*y[x]^2+b*y[x]+c*x+k; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {c \left (-b (-a c)^{2/3} \operatorname {AiryBi}\left (\frac {b^2-4 a (k+c x)}{4 (-a c)^{2/3}}\right )+2 a c \operatorname {AiryBiPrime}\left (\frac {b^2-4 a (k+c x)}{4 (-a c)^{2/3}}\right )+c_1 \left (2 a c \operatorname {AiryAiPrime}\left (\frac {b^2-4 a (k+c x)}{4 (-a c)^{2/3}}\right )-b (-a c)^{2/3} \operatorname {AiryAi}\left (\frac {b^2-4 a (k+c x)}{4 (-a c)^{2/3}}\right )\right )\right )}{2 (-a c)^{5/3} \left (\operatorname {AiryBi}\left (\frac {b^2-4 a (k+c x)}{4 (-a c)^{2/3}}\right )+c_1 \operatorname {AiryAi}\left (\frac {b^2-4 a (k+c x)}{4 (-a c)^{2/3}}\right )\right )} \\ y(x)\to -\frac {\frac {2 \sqrt [3]{-a c} \operatorname {AiryAiPrime}\left (\frac {b^2-4 a (k+c x)}{4 (-a c)^{2/3}}\right )}{\operatorname {AiryAi}\left (\frac {b^2-4 a (k+c x)}{4 (-a c)^{2/3}}\right )}+b}{2 a} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
k = symbols("k") 
y = Function("y") 
ode = Eq(-a*y(x)**2 - b*y(x) - c*x - k + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -a*y(x)**2 - b*y(x) - c*x - k + Derivative(y(x), x) cannot be solved by the lie group method