Internal
problem
ID
[11950]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
1.2.2.
Equations
Containing
Power
Functions
Problem
number
:
23
Date
solved
:
Sunday, March 30, 2025 at 09:26:06 PM
CAS
classification
:
[_rational, _Riccati]
ode:=(a*x^n+b*x^m+c)*(diff(y(x),x)-y(x)^2)+a*n*(n-1)*x^(n-2)+b*m*(m-1)*x^(m-2) = 0; dsolve(ode,y(x), singsol=all);
ode=(a*x^n+b*x^m+c)*(D[y[x],x]-y[x]^2)+a*n*(n-1)*x^(n-2)+b*m*(m-1)*x^(m-2)==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") m = symbols("m") n = symbols("n") y = Function("y") ode = Eq(a*n*x**(n - 2)*(n - 1) + b*m*x**(m - 2)*(m - 1) + (-y(x)**2 + Derivative(y(x), x))*(a*x**n + b*x**m + c),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out