61.2.12 problem 12

Internal problem ID [11939]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number : 12
Date solved : Sunday, March 30, 2025 at 09:24:46 PM
CAS classification : [_rational, _Riccati]

\begin{align*} \left (a_{2} x +b_{2} \right ) \left (y^{\prime }+\lambda y^{2}\right )+a_{0} x +b_{0}&=0 \end{align*}

Maple. Time used: 0.026 (sec). Leaf size: 461
ode:=(a__2*x+b__2)*(diff(y(x),x)+lambda*y(x)^2)+a__0*x+b__0 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} \text {Solution too large to show}\end{align*}

Mathematica. Time used: 1.166 (sec). Leaf size: 540
ode=(a2*x+b2)*(D[y[x],x]+\[Lambda]*y[x]^2)+a0*x+b0==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solution too large to show}\end{align*}

Sympy
from sympy import * 
x = symbols("x") 
a__0 = symbols("a__0") 
a__2 = symbols("a__2") 
b__0 = symbols("b__0") 
b__2 = symbols("b__2") 
lambda_ = symbols("lambda_") 
y = Function("y") 
ode = Eq(a__0*x + b__0 + (a__2*x + b__2)*(lambda_*y(x)**2 + Derivative(y(x), x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out