Internal
problem
ID
[11938]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
1.2.2.
Equations
Containing
Power
Functions
Problem
number
:
11
Date
solved
:
Sunday, March 30, 2025 at 09:23:59 PM
CAS
classification
:
[_Riccati]
ode:=diff(y(x),x) = (a*x^(2*n)+b*x^(n-1))*y(x)^2+c; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==(a*x^(2*n)+b*x^(n-1))*y[x]^2+c; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") n = symbols("n") y = Function("y") ode = Eq(-c - (a*x**(2*n) + b*x**(n - 1))*y(x)**2 + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -a*x**(2*n)*y(x)**2 - b*x**(n - 1)*y(x)**2 - c + Derivative(y(x), x) cannot be solved by the factorable group method