Internal
problem
ID
[11851]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
9,
system
of
higher
order
odes
Problem
number
:
1931
Date
solved
:
Sunday, March 30, 2025 at 09:18:30 PM
CAS
classification
:
system_of_ODEs
ode:=[a*diff(x(t),t) = (-c+b)*y(t)*z(t), b*diff(y(t),t) = (c-a)*z(t)*x(t), c*diff(z(t),t) = (a-b)*x(t)*y(t)]; dsolve(ode);
ode={a*D[x[t],t]==(b-c)*y[t]*z[t],b*D[y[t],t]==(c-a)*z[t]*x[t],c*D[z[t],t]==(a-b)*x[t]*y[t]}; ic={}; DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") a = symbols("a") b = symbols("b") c = symbols("c") x = Function("x") y = Function("y") z = Function("z") ode=[Eq(a*Derivative(x(t), t) - (b - c)*y(t)*z(t),0),Eq(b*Derivative(y(t), t) - (-a + c)*x(t)*z(t),0),Eq(c*Derivative(z(t), t) - (a - b)*x(t)*y(t),0)] ics = {} dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)
Timed Out