Internal
problem
ID
[11724]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
6,
non-linear
second
order
Problem
number
:
1794
(book
6.203)
Date
solved
:
Sunday, March 30, 2025 at 08:44:45 PM
CAS
classification
:
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]
ode:=a*y(x)*(-1+y(x))*diff(diff(y(x),x),x)-(a-1)*(2*y(x)-1)*diff(y(x),x)^2+f*y(x)*(-1+y(x))*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=f[x]*(-1 + y[x])*y[x]*D[y[x],x] - (-1 + a)*(-1 + 2*y[x])*D[y[x],x]^2 + a*(-1 + y[x])*y[x]*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") f = symbols("f") y = Function("y") ode = Eq(a*(y(x) - 1)*y(x)*Derivative(y(x), (x, 2)) + f*(y(x) - 1)*y(x)*Derivative(y(x), x) - (a - 1)*(2*y(x) - 1)*Derivative(y(x), x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -(f*y(x)**2 - f*y(x) + sqrt((8*a**2*y(x)**2*Derivative(y(x), (x, 2)) - 12*a**2*y(x)*Derivative(y(x), (x, 2)) + 4*a**2*Derivative(y(x), (x, 2)) - 8*a*y(x)**2*Derivative(y(x), (x, 2)) + 12*a*y(x)*Derivative(y(x), (x, 2)) - 4*a*Derivative(y(x), (x, 2)) + f**2*y(x)**3 - 2*f**2*y(x)**2 + f**2*y(x))*y(x)))/(2*(2*a*y(x) - a - 2*y(x) + 1)) + Derivative(y(x), x) cannot be solved by the factorable group method