60.7.173 problem 1793 (book 6.202)

Internal problem ID [11723]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 6, non-linear second order
Problem number : 1793 (book 6.202)
Date solved : Sunday, March 30, 2025 at 08:44:42 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} a y \left (-1+y\right ) y^{\prime \prime }+\left (b y+c \right ) {y^{\prime }}^{2}+h \left (y\right )&=0 \end{align*}

Maple. Time used: 0.016 (sec). Leaf size: 166
ode:=a*y(x)*(-1+y(x))*diff(diff(y(x),x),x)+(b*y(x)+c)*diff(y(x),x)^2+h(y(x)) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} a \int _{}^{y}\frac {\textit {\_b}^{-\frac {c}{a}} \left (-1+\textit {\_b} \right )^{\frac {c +b}{a}}}{\sqrt {-2 a \left (-\frac {c_1 a}{2}+\int \textit {\_b}^{\frac {-a -2 c}{a}} h \left (\textit {\_b} \right ) \left (-1+\textit {\_b} \right )^{\frac {-a +2 b +2 c}{a}}d \textit {\_b} \right )}}d \textit {\_b} -x -c_2 &= 0 \\ -a \int _{}^{y}\frac {\textit {\_b}^{-\frac {c}{a}} \left (-1+\textit {\_b} \right )^{\frac {c +b}{a}}}{\sqrt {-2 a \left (-\frac {c_1 a}{2}+\int \textit {\_b}^{\frac {-a -2 c}{a}} h \left (\textit {\_b} \right ) \left (-1+\textit {\_b} \right )^{\frac {-a +2 b +2 c}{a}}d \textit {\_b} \right )}}d \textit {\_b} -x -c_2 &= 0 \\ \end{align*}
Mathematica. Time used: 1.396 (sec). Leaf size: 752
ode=h[y[x]] + (c + b*y[x])*D[y[x],x]^2 + a*(-1 + y[x])*y[x]*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}-\frac {\exp \left (-\int _1^{K[3]}\frac {-c-b K[1]}{a (K[1]-1) K[1]}dK[1]\right )}{\sqrt {c_1+2 \int _1^{K[3]}-\frac {\exp \left (-2 \int _1^{K[2]}\frac {-c-b K[1]}{a (K[1]-1) K[1]}dK[1]\right ) h(K[2])}{a (K[2]-1) K[2]}dK[2]}}dK[3]\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {\exp \left (-\int _1^{K[4]}\frac {-c-b K[1]}{a (K[1]-1) K[1]}dK[1]\right )}{\sqrt {c_1+2 \int _1^{K[4]}-\frac {\exp \left (-2 \int _1^{K[2]}\frac {-c-b K[1]}{a (K[1]-1) K[1]}dK[1]\right ) h(K[2])}{a (K[2]-1) K[2]}dK[2]}}dK[4]\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}-\frac {\exp \left (-\int _1^{K[3]}\frac {-c-b K[1]}{a (K[1]-1) K[1]}dK[1]\right )}{\sqrt {2 \int _1^{K[3]}-\frac {\exp \left (-2 \int _1^{K[2]}\frac {-c-b K[1]}{a (K[1]-1) K[1]}dK[1]\right ) h(K[2])}{a (K[2]-1) K[2]}dK[2]-c_1}}dK[3]\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}-\frac {\exp \left (-\int _1^{K[3]}\frac {-c-b K[1]}{a (K[1]-1) K[1]}dK[1]\right )}{\sqrt {c_1+2 \int _1^{K[3]}-\frac {\exp \left (-2 \int _1^{K[2]}\frac {-c-b K[1]}{a (K[1]-1) K[1]}dK[1]\right ) h(K[2])}{a (K[2]-1) K[2]}dK[2]}}dK[3]\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {\exp \left (-\int _1^{K[4]}\frac {-c-b K[1]}{a (K[1]-1) K[1]}dK[1]\right )}{\sqrt {2 \int _1^{K[4]}-\frac {\exp \left (-2 \int _1^{K[2]}\frac {-c-b K[1]}{a (K[1]-1) K[1]}dK[1]\right ) h(K[2])}{a (K[2]-1) K[2]}dK[2]-c_1}}dK[4]\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {\exp \left (-\int _1^{K[4]}\frac {-c-b K[1]}{a (K[1]-1) K[1]}dK[1]\right )}{\sqrt {c_1+2 \int _1^{K[4]}-\frac {\exp \left (-2 \int _1^{K[2]}\frac {-c-b K[1]}{a (K[1]-1) K[1]}dK[1]\right ) h(K[2])}{a (K[2]-1) K[2]}dK[2]}}dK[4]\&\right ][x+c_2] \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
y = Function("y") 
h = Function("h") 
ode = Eq(a*(y(x) - 1)*y(x)*Derivative(y(x), (x, 2)) + (b*y(x) + c)*Derivative(y(x), x)**2 + h(y(x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE sqrt(-(a*y(x)**2*Derivative(y(x), (x, 2)) - a*y(x)*Derivative(y(x), (x, 2)) + h(y(x)))/(b*y(x) + c)) + Derivative(y(x), x) cannot be solved by the factorable group method