60.7.172 problem 1792 (book 6.201)

Internal problem ID [11722]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 6, non-linear second order
Problem number : 1792 (book 6.201)
Date solved : Sunday, March 30, 2025 at 08:44:39 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} \left (1-y\right ) y^{\prime \prime }-3 \left (1-2 y\right ) {y^{\prime }}^{2}-h \left (y\right )&=0 \end{align*}

Maple. Time used: 0.084 (sec). Leaf size: 91
ode:=(1-y(x))*diff(diff(y(x),x),x)-3*(1-2*y(x))*diff(y(x),x)^2-h(y(x)) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} \int _{}^{y}\frac {{\mathrm e}^{-6 \textit {\_b}}}{\sqrt {-2 \int \frac {{\mathrm e}^{-12 \textit {\_b}} h \left (\textit {\_b} \right )}{\left (-1+\textit {\_b} \right )^{7}}d \textit {\_b} +c_1}\, \left (-1+\textit {\_b} \right )^{3}}d \textit {\_b} -x -c_2 &= 0 \\ -\int _{}^{y}\frac {{\mathrm e}^{-6 \textit {\_b}}}{\sqrt {-2 \int \frac {{\mathrm e}^{-12 \textit {\_b}} h \left (\textit {\_b} \right )}{\left (-1+\textit {\_b} \right )^{7}}d \textit {\_b} +c_1}\, \left (-1+\textit {\_b} \right )^{3}}d \textit {\_b} -x -c_2 &= 0 \\ \end{align*}
Mathematica. Time used: 0.718 (sec). Leaf size: 590
ode=-h[y[x]] - 3*(1 - 2*y[x])*D[y[x],x]^2 + (1 - y[x])*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}-\frac {\exp \left (-\int _1^{K[3]}\frac {6 K[1]-3}{K[1]-1}dK[1]\right )}{\sqrt {c_1+2 \int _1^{K[3]}-\frac {\exp \left (-2 \int _1^{K[2]}\frac {6 K[1]-3}{K[1]-1}dK[1]\right ) h(K[2])}{K[2]-1}dK[2]}}dK[3]\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {\exp \left (-\int _1^{K[4]}\frac {6 K[1]-3}{K[1]-1}dK[1]\right )}{\sqrt {c_1+2 \int _1^{K[4]}-\frac {\exp \left (-2 \int _1^{K[2]}\frac {6 K[1]-3}{K[1]-1}dK[1]\right ) h(K[2])}{K[2]-1}dK[2]}}dK[4]\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}-\frac {\exp \left (-\int _1^{K[3]}\frac {6 K[1]-3}{K[1]-1}dK[1]\right )}{\sqrt {2 \int _1^{K[3]}-\frac {\exp \left (-2 \int _1^{K[2]}\frac {6 K[1]-3}{K[1]-1}dK[1]\right ) h(K[2])}{K[2]-1}dK[2]-c_1}}dK[3]\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}-\frac {\exp \left (-\int _1^{K[3]}\frac {6 K[1]-3}{K[1]-1}dK[1]\right )}{\sqrt {c_1+2 \int _1^{K[3]}-\frac {\exp \left (-2 \int _1^{K[2]}\frac {6 K[1]-3}{K[1]-1}dK[1]\right ) h(K[2])}{K[2]-1}dK[2]}}dK[3]\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {\exp \left (-\int _1^{K[4]}\frac {6 K[1]-3}{K[1]-1}dK[1]\right )}{\sqrt {2 \int _1^{K[4]}-\frac {\exp \left (-2 \int _1^{K[2]}\frac {6 K[1]-3}{K[1]-1}dK[1]\right ) h(K[2])}{K[2]-1}dK[2]-c_1}}dK[4]\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {\exp \left (-\int _1^{K[4]}\frac {6 K[1]-3}{K[1]-1}dK[1]\right )}{\sqrt {c_1+2 \int _1^{K[4]}-\frac {\exp \left (-2 \int _1^{K[2]}\frac {6 K[1]-3}{K[1]-1}dK[1]\right ) h(K[2])}{K[2]-1}dK[2]}}dK[4]\&\right ][x+c_2] \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
h = Function("h") 
ode = Eq((1 - y(x))*Derivative(y(x), (x, 2)) - (3 - 6*y(x))*Derivative(y(x), x)**2 - h(y(x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -sqrt(3)*sqrt((h(y(x)) + y(x)*Derivative(y(x), (x, 2)) - Derivative(y(x), (x, 2)))/(2*y(x) - 1))/3 + Derivative(y(x), x) cannot be solved by the factorable group method