Internal
problem
ID
[11631]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
6,
non-linear
second
order
Problem
number
:
1690
(book
6.99)
Date
solved
:
Sunday, March 30, 2025 at 08:31:58 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^4*diff(diff(y(x),x),x)+(-y(x)+x*diff(y(x),x))^3 = 0; dsolve(ode,y(x), singsol=all);
ode=(-y[x] + x*D[y[x],x])^3 + x^4*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**4*Derivative(y(x), (x, 2)) + (x*Derivative(y(x), x) - y(x))**3,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -(-(x**4*Derivative(y(x), (x, 2)) - y(x)**3)/x**3 - y(x)**3/x**3)**(1/3) + Derivative(y(x), x) - y(x)/x cannot be solved by the factorable group method