Internal
problem
ID
[11630]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
6,
non-linear
second
order
Problem
number
:
1689
(book
6.98)
Date
solved
:
Sunday, March 30, 2025 at 08:31:57 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]
ode:=x^4*diff(diff(y(x),x),x)-x^2*(x+diff(y(x),x))*diff(y(x),x)+4*y(x)^2 = 0; dsolve(ode,y(x), singsol=all);
ode=4*y[x]^2 - x^2*D[y[x],x]*(x + D[y[x],x]) + x^4*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**4*Derivative(y(x), (x, 2)) - x**2*(x + Derivative(y(x), x))*Derivative(y(x), x) + 4*y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-x**2 + sqrt(4*x**4*Derivative(y(x), (x, 2)) + x**4 + 16*y(x)**2))/(2*x) cannot be solved by the factorable group method