60.6.11 problem 1588

Internal problem ID [11548]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 5, linear fifth and higher order
Problem number : 1588
Date solved : Sunday, March 30, 2025 at 08:24:40 PM
CAS classification : [[_high_order, _with_linear_symmetries]]

\begin{align*} x^{10} y^{\left (5\right )}-a y&=0 \end{align*}

Maple. Time used: 0.012 (sec). Leaf size: 90
ode:=x^10*diff(diff(diff(diff(diff(y(x),x),x),x),x),x)-a*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \operatorname {hypergeom}\left (\left [\right ], \left [\frac {6}{5}, \frac {7}{5}, \frac {8}{5}, \frac {9}{5}\right ], -\frac {a}{3125 x^{5}}\right )+c_2 x \operatorname {hypergeom}\left (\left [\right ], \left [\frac {4}{5}, \frac {6}{5}, \frac {7}{5}, \frac {8}{5}\right ], -\frac {a}{3125 x^{5}}\right )+c_3 \,x^{2} \operatorname {hypergeom}\left (\left [\right ], \left [\frac {3}{5}, \frac {4}{5}, \frac {6}{5}, \frac {7}{5}\right ], -\frac {a}{3125 x^{5}}\right )+c_4 \,x^{3} \operatorname {hypergeom}\left (\left [\right ], \left [\frac {2}{5}, \frac {3}{5}, \frac {4}{5}, \frac {6}{5}\right ], -\frac {a}{3125 x^{5}}\right )+c_5 \,x^{4} \operatorname {hypergeom}\left (\left [\right ], \left [\frac {1}{5}, \frac {2}{5}, \frac {3}{5}, \frac {4}{5}\right ], -\frac {a}{3125 x^{5}}\right ) \]
Mathematica. Time used: 6.095 (sec). Leaf size: 106
ode=x^10*D[y[x],{x,5}]-a*y[x]== 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {x^4 \left (c_1 e^{-\frac {\sqrt [5]{a}}{x}}+c_2 e^{\frac {\sqrt [5]{-1} \sqrt [5]{a}}{x}}+c_3 e^{-\frac {(-1)^{2/5} \sqrt [5]{a}}{x}}+c_4 e^{\frac {(-1)^{3/5} \sqrt [5]{a}}{x}}+c_5 e^{-\frac {(-1)^{4/5} \sqrt [5]{a}}{x}}\right )}{e^4} \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(-a*y(x) + x**10*Derivative(y(x), (x, 5)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : solve: Cannot solve -a*y(x) + x**10*Derivative(y(x), (x, 5))