60.6.10 problem 1587

Internal problem ID [11547]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 5, linear fifth and higher order
Problem number : 1587
Date solved : Sunday, March 30, 2025 at 08:24:39 PM
CAS classification : [[_high_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime \prime \prime }-a y&=0 \end{align*}

Maple. Time used: 0.013 (sec). Leaf size: 161
ode:=x^2*diff(diff(diff(diff(y(x),x),x),x),x)-a*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\left (\left (\operatorname {BesselJ}\left (1, 2 \sqrt {-\sqrt {a}}\, \sqrt {x}\right ) c_3 +\operatorname {BesselY}\left (1, 2 \sqrt {-\sqrt {a}}\, \sqrt {x}\right ) c_4 \right ) a^{{1}/{4}}+\left (\operatorname {BesselY}\left (1, 2 a^{{1}/{4}} \sqrt {x}\right ) c_2 +\operatorname {BesselJ}\left (1, 2 a^{{1}/{4}} \sqrt {x}\right ) c_1 \right ) \sqrt {-\sqrt {a}}\right ) \sqrt {x}-\sqrt {-\sqrt {a}}\, \left (\operatorname {BesselJ}\left (0, 2 a^{{1}/{4}} \sqrt {x}\right ) c_1 +\operatorname {BesselY}\left (0, 2 a^{{1}/{4}} \sqrt {x}\right ) c_2 +\operatorname {BesselJ}\left (0, 2 \sqrt {-\sqrt {a}}\, \sqrt {x}\right ) c_3 +\operatorname {BesselY}\left (0, 2 \sqrt {-\sqrt {a}}\, \sqrt {x}\right ) c_4 \right ) x \,a^{{1}/{4}}}{a^{{1}/{4}} \sqrt {-\sqrt {a}}} \]
Mathematica. Time used: 0.034 (sec). Leaf size: 121
ode=x^2*D[y[x],{x,4}]-a*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_4 G_{0,4}^{2,0}\left (\frac {a x^2}{16}| \begin {array}{c} 0,1,\frac {1}{2},\frac {3}{2} \\ \end {array} \right )+c_2 G_{0,4}^{2,0}\left (\frac {a x^2}{16}| \begin {array}{c} \frac {1}{2},\frac {3}{2},0,1 \\ \end {array} \right )+\frac {1}{64} \sqrt {a} x \left ((4 c_3-3 i c_1) \operatorname {BesselJ}\left (2,2 \sqrt [4]{a} \sqrt {x}\right )+(3 i c_1+4 c_3) \operatorname {BesselI}\left (2,2 \sqrt [4]{a} \sqrt {x}\right )\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(-a*y(x) + x**2*Derivative(y(x), (x, 4)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : solve: Cannot solve -a*y(x) + x**2*Derivative(y(x), (x, 4))