60.5.29 problem 1566

Internal problem ID [11526]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 4, linear fourth order
Problem number : 1566
Date solved : Sunday, March 30, 2025 at 08:24:12 PM
CAS classification : [[_high_order, _with_linear_symmetries]]

\begin{align*} x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+\left (4 x^{4}+\left (-2 \mu ^{2}-2 \nu ^{2}+7\right ) x^{2}\right ) y^{\prime \prime }+\left (16 x^{3}+\left (-2 \mu ^{2}-2 \nu ^{2}+1\right ) x \right ) y^{\prime }+\left (8 x^{2}+\left (\mu ^{2}-\nu ^{2}\right )^{2}\right ) y&=0 \end{align*}

Maple. Time used: 0.012 (sec). Leaf size: 35
ode:=x^4*diff(diff(diff(diff(y(x),x),x),x),x)+6*x^3*diff(diff(diff(y(x),x),x),x)+(4*x^4+(-2*mu^2-2*nu^2+7)*x^2)*diff(diff(y(x),x),x)+(16*x^3+(-2*mu^2-2*nu^2+1)*x)*diff(y(x),x)+(8*x^2+(mu^2-nu^2)^2)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (\operatorname {BesselY}\left (\mu , x\right ) c_2 +c_1 \operatorname {BesselJ}\left (\mu , x\right )\right ) \operatorname {BesselJ}\left (\nu , x\right )+\operatorname {BesselY}\left (\nu , x\right ) \left (\operatorname {BesselY}\left (\mu , x\right ) c_4 +c_3 \operatorname {BesselJ}\left (\mu , x\right )\right ) \]
Mathematica. Time used: 0.314 (sec). Leaf size: 237
ode=((\[Mu]^2 - \[Nu]^2)^2 + 8*x^2)*y[x] + ((1 - 2*\[Mu]^2 - 2*\[Nu]^2)*x + 16*x^3)*D[y[x],x] + ((7 - 2*\[Mu]^2 - 2*\[Nu]^2)*x^2 + 4*x^4)*D[y[x],{x,2}] + 6*x^3*Derivative[3][y][x] + x^4*Derivative[4][y][x] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to x^{-\mu -\nu } \left (c_1 \, _2F_3\left (-\frac {\mu }{2}-\frac {\nu }{2}+\frac {1}{2},-\frac {\mu }{2}-\frac {\nu }{2}+1;1-\mu ,1-\nu ,-\mu -\nu +1;-x^2\right )+c_2 x^{2 \mu } \, _2F_3\left (\frac {\mu }{2}-\frac {\nu }{2}+\frac {1}{2},\frac {\mu }{2}-\frac {\nu }{2}+1;\mu +1,1-\nu ,\mu -\nu +1;-x^2\right )+x^{2 \nu } \left (c_3 \, _2F_3\left (-\frac {\mu }{2}+\frac {\nu }{2}+\frac {1}{2},-\frac {\mu }{2}+\frac {\nu }{2}+1;1-\mu ,\nu +1,-\mu +\nu +1;-x^2\right )+c_4 x^{2 \mu } \, _2F_3\left (\frac {\mu }{2}+\frac {\nu }{2}+\frac {1}{2},\frac {\mu }{2}+\frac {\nu }{2}+1;\mu +1,\nu +1,\mu +\nu +1;-x^2\right )\right )\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
mu = symbols("mu") 
nu = symbols("nu") 
y = Function("y") 
ode = Eq(x**4*Derivative(y(x), (x, 4)) + 6*x**3*Derivative(y(x), (x, 3)) + (8*x**2 + (mu**2 - nu**2)**2)*y(x) + (16*x**3 + x*(-2*mu**2 - 2*nu**2 + 1))*Derivative(y(x), x) + (4*x**4 + x**2*(-2*mu**2 - 2*nu**2 + 7))*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out