Internal
problem
ID
[11526]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
4,
linear
fourth
order
Problem
number
:
1566
Date
solved
:
Sunday, March 30, 2025 at 08:24:12 PM
CAS
classification
:
[[_high_order, _with_linear_symmetries]]
ode:=x^4*diff(diff(diff(diff(y(x),x),x),x),x)+6*x^3*diff(diff(diff(y(x),x),x),x)+(4*x^4+(-2*mu^2-2*nu^2+7)*x^2)*diff(diff(y(x),x),x)+(16*x^3+(-2*mu^2-2*nu^2+1)*x)*diff(y(x),x)+(8*x^2+(mu^2-nu^2)^2)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=((\[Mu]^2 - \[Nu]^2)^2 + 8*x^2)*y[x] + ((1 - 2*\[Mu]^2 - 2*\[Nu]^2)*x + 16*x^3)*D[y[x],x] + ((7 - 2*\[Mu]^2 - 2*\[Nu]^2)*x^2 + 4*x^4)*D[y[x],{x,2}] + 6*x^3*Derivative[3][y][x] + x^4*Derivative[4][y][x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") mu = symbols("mu") nu = symbols("nu") y = Function("y") ode = Eq(x**4*Derivative(y(x), (x, 4)) + 6*x**3*Derivative(y(x), (x, 3)) + (8*x**2 + (mu**2 - nu**2)**2)*y(x) + (16*x**3 + x*(-2*mu**2 - 2*nu**2 + 1))*Derivative(y(x), x) + (4*x**4 + x**2*(-2*mu**2 - 2*nu**2 + 7))*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out