Internal
problem
ID
[11525]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
4,
linear
fourth
order
Problem
number
:
1565
Date
solved
:
Sunday, March 30, 2025 at 08:24:11 PM
CAS
classification
:
[[_high_order, _with_linear_symmetries]]
ode:=x^4*diff(diff(diff(diff(y(x),x),x),x),x)+6*x^3*diff(diff(diff(y(x),x),x),x)+(4*x^4+(-rho^2-sigma^2+7)*x^2)*diff(diff(y(x),x),x)+(16*x^3+(-rho^2-sigma^2+1)*x)*diff(y(x),x)+(rho^2*sigma^2+8*x^2)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(rho^2*sigma^2 + 8*x^2)*y[x] + ((1 - rho^2 - sigma^2)*x + 16*x^3)*D[y[x],x] + ((7 - rho^2 - sigma^2)*x^2 + 4*x^4)*D[y[x],{x,2}] + 6*x^3*Derivative[3][y][x] + x^4*Derivative[4][y][x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") rho = symbols("rho") sigma = symbols("sigma") y = Function("y") ode = Eq(x**4*Derivative(y(x), (x, 4)) + 6*x**3*Derivative(y(x), (x, 3)) + (16*x**3 + x*(-rho**2 - sigma**2 + 1))*Derivative(y(x), x) + (4*x**4 + x**2*(-rho**2 - sigma**2 + 7))*Derivative(y(x), (x, 2)) + (rho**2*sigma**2 + 8*x**2)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (rho**2*sigma**2*y(x) - rho**2*x**2*Derivative(y(x), (x, 2)) - sigma**2*x**2*Derivative(y(x), (x, 2)) + 4*x**4*Derivative(y(x), (x, 2)) + x**4*Derivative(y(x), (x, 4)) + 6*x**3*Derivative(y(x), (x, 3)) + 8*x**2*y(x) + 7*x**2*Derivative(y(x), (x, 2)))/(x*(rho**2 + sigma**2 - 16*x**2 - 1)) cannot be solved by the factorable group method