Internal
problem
ID
[11522]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
4,
linear
fourth
order
Problem
number
:
1562
Date
solved
:
Sunday, March 30, 2025 at 08:24:08 PM
CAS
classification
:
[[_high_order, _with_linear_symmetries]]
ode:=x^4*diff(diff(diff(diff(y(x),x),x),x),x)+4*x^3*diff(diff(diff(y(x),x),x),x)-(4*n^2-1)*x^2*diff(diff(y(x),x),x)+(4*n^2-1)*x*diff(y(x),x)-4*y(x)*x^4 = 0; dsolve(ode,y(x), singsol=all);
ode=-4*x^4*y[x] + (-1 + 4*n^2)*x*D[y[x],x] - (-1 + 4*n^2)*x^2*D[y[x],{x,2}] + 4*x^3*Derivative[3][y][x] + x^4*Derivative[4][y][x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") n = symbols("n") y = Function("y") ode = Eq(-4*x**4*y(x) + x**4*Derivative(y(x), (x, 4)) + 4*x**3*Derivative(y(x), (x, 3)) - x**2*(4*n**2 - 1)*Derivative(y(x), (x, 2)) + x*(4*n**2 - 1)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -x*(4*n**2*Derivative(y(x), (x, 2)) + 4*x**2*y(x) - x**2*Derivative(y(x), (x, 4)) - 4*x*Derivative(y(x), (x, 3)) - Derivative(y(x), (x, 2)))/(4*n**2 - 1) + Derivative(y(x), x) cannot be solved by the factorable group method