Internal
problem
ID
[11523]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
4,
linear
fourth
order
Problem
number
:
1563
Date
solved
:
Sunday, March 30, 2025 at 08:24:09 PM
CAS
classification
:
[[_high_order, _with_linear_symmetries]]
ode:=x^4*diff(diff(diff(diff(y(x),x),x),x),x)+4*x^3*diff(diff(diff(y(x),x),x),x)-(4*n^2-1)*x^2*diff(diff(y(x),x),x)-(4*n^2-1)*x*diff(y(x),x)+(-4*x^4+4*n^2-1)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(-1 + 4*n^2 - 4*x^4)*y[x] - (-1 + 4*n^2)*x*D[y[x],x] - (-1 + 4*n^2)*x^2*D[y[x],{x,2}] + 4*x^3*Derivative[3][y][x] + x^4*Derivative[4][y][x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") n = symbols("n") y = Function("y") ode = Eq(x**4*Derivative(y(x), (x, 4)) + 4*x**3*Derivative(y(x), (x, 3)) - x**2*(4*n**2 - 1)*Derivative(y(x), (x, 2)) - x*(4*n**2 - 1)*Derivative(y(x), x) + (4*n**2 - 4*x**4 - 1)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-4*n**2*x**2*Derivative(y(x), (x, 2)) + 4*n**2*y(x) - 4*x**4*y(x) + x**4*Derivative(y(x), (x, 4)) + 4*x**3*Derivative(y(x), (x, 3)) + x**2*Derivative(y(x), (x, 2)) - y(x))/(x*(4*n**2 - 1)) cannot be solved by the factorable group method