60.5.17 problem 1554

Internal problem ID [11514]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 4, linear fourth order
Problem number : 1554
Date solved : Sunday, March 30, 2025 at 08:24:00 PM
CAS classification : [[_high_order, _missing_y]]

\begin{align*} x^{2} y^{\prime \prime \prime \prime }+6 x y^{\prime \prime \prime }+6 y^{\prime \prime }&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 18
ode:=x^2*diff(diff(diff(diff(y(x),x),x),x),x)+6*x*diff(diff(diff(y(x),x),x),x)+6*diff(diff(y(x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 +c_2 \ln \left (x \right )+c_3 x +\frac {c_4}{x} \]
Mathematica. Time used: 0.029 (sec). Leaf size: 29
ode=6*D[y[x],{x,2}] + 6*x*Derivative[3][y][x] + x^2*Derivative[4][y][x] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {c_1}{2 x}+c_4 x-c_2 \log (x)+c_2+c_3 \]
Sympy. Time used: 0.089 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 4)) + 6*x*Derivative(y(x), (x, 3)) + 6*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + \frac {C_{2}}{x} + C_{3} x + C_{4} \log {\left (x \right )} \]