60.5.18 problem 1555

Internal problem ID [11515]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 4, linear fourth order
Problem number : 1555
Date solved : Sunday, March 30, 2025 at 08:24:01 PM
CAS classification : [[_high_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime \prime \prime }+6 x y^{\prime \prime \prime }+6 y^{\prime \prime }-\lambda ^{2} y&=0 \end{align*}

Maple. Time used: 0.028 (sec). Leaf size: 61
ode:=x^2*diff(diff(diff(diff(y(x),x),x),x),x)+6*x*diff(diff(diff(y(x),x),x),x)+6*diff(diff(y(x),x),x)-lambda^2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_1 \operatorname {BesselJ}\left (1, 2 \sqrt {\lambda }\, \sqrt {x}\right )+c_3 \operatorname {BesselJ}\left (1, 2 \sqrt {-\lambda }\, \sqrt {x}\right )+c_2 \operatorname {BesselY}\left (1, 2 \sqrt {\lambda }\, \sqrt {x}\right )+c_4 \operatorname {BesselY}\left (1, 2 \sqrt {-\lambda }\, \sqrt {x}\right )}{\sqrt {x}} \]
Mathematica. Time used: 0.033 (sec). Leaf size: 156
ode=-(\[Lambda]^2*y[x]) + 6*D[y[x],{x,2}] + 6*x*Derivative[3][y][x] + x^2*Derivative[4][y][x] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_4 G_{0,4}^{2,0}\left (\frac {x^2 \lambda ^2}{16}| \begin {array}{c} -\frac {1}{2},\frac {1}{2},0,0 \\ \end {array} \right )+c_2 G_{0,4}^{2,0}\left (\frac {x^2 \lambda ^2}{16}| \begin {array}{c} 0,0,-\frac {1}{2},\frac {1}{2} \\ \end {array} \right )+\frac {c_1 \left (\operatorname {BesselJ}\left (1,2 \sqrt {x} \sqrt {\lambda }\right )+\operatorname {BesselI}\left (1,2 \sqrt {x} \sqrt {\lambda }\right )\right )}{2 \sqrt {\lambda } \sqrt {x}}-\frac {i c_3 \left (\operatorname {BesselI}\left (1,2 \sqrt {x} \sqrt {\lambda }\right )-\operatorname {BesselJ}\left (1,2 \sqrt {x} \sqrt {\lambda }\right )\right )}{4 \sqrt {\lambda } \sqrt {x}} \]
Sympy
from sympy import * 
x = symbols("x") 
lambda_ = symbols("lambda_") 
y = Function("y") 
ode = Eq(-lambda_**2*y(x) + x**2*Derivative(y(x), (x, 4)) + 6*x*Derivative(y(x), (x, 3)) + 6*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : solve: Cannot solve -lambda_**2*y(x) + x**2*Derivative(y(x), (x, 4)) + 6*x*Derivative(y(x), (x, 3)) + 6*Derivative(y(x), (x, 2))