Internal
problem
ID
[11515]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
4,
linear
fourth
order
Problem
number
:
1555
Date
solved
:
Sunday, March 30, 2025 at 08:24:01 PM
CAS
classification
:
[[_high_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(diff(diff(y(x),x),x),x),x)+6*x*diff(diff(diff(y(x),x),x),x)+6*diff(diff(y(x),x),x)-lambda^2*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=-(\[Lambda]^2*y[x]) + 6*D[y[x],{x,2}] + 6*x*Derivative[3][y][x] + x^2*Derivative[4][y][x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") lambda_ = symbols("lambda_") y = Function("y") ode = Eq(-lambda_**2*y(x) + x**2*Derivative(y(x), (x, 4)) + 6*x*Derivative(y(x), (x, 3)) + 6*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : solve: Cannot solve -lambda_**2*y(x) + x**2*Derivative(y(x), (x, 4)) + 6*x*Derivative(y(x), (x, 3)) + 6*Derivative(y(x), (x, 2))