Internal
problem
ID
[11488]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
3,
linear
third
order
Problem
number
:
1523
Date
solved
:
Sunday, March 30, 2025 at 08:23:26 PM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=(x^2+1)*x^3*diff(diff(diff(y(x),x),x),x)-(4*x^2+2)*x^2*diff(diff(y(x),x),x)+(10*x^2+4)*x*diff(y(x),x)-4*(3*x^2+1)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=-4*(1 + 3*x^2)*y[x] + x*(4 + 10*x^2)*D[y[x],x] - x^2*(2 + 4*x^2)*D[y[x],{x,2}] + x^3*(1 + x^2)*Derivative[3][y][x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3*(x**2 + 1)*Derivative(y(x), (x, 3)) - x**2*(4*x**2 + 2)*Derivative(y(x), (x, 2)) + x*(10*x**2 + 4)*Derivative(y(x), x) - (12*x**2 + 4)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-x**5*Derivative(y(x), (x, 3)) + 4*x**4*Derivative(y(x), (x, 2)) - x**3*Derivative(y(x), (x, 3)) + 12*x**2*y(x) + 2*x**2*Derivative(y(x), (x, 2)) + 4*y(x))/(10*x**3 + 4*x) cannot be solved by the factorable group method