60.4.64 problem 1522

Internal problem ID [11487]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 3, linear third order
Problem number : 1522
Date solved : Sunday, March 30, 2025 at 08:23:25 PM
CAS classification : [[_3rd_order, _missing_y]]

\begin{align*} 4 x^{4} y^{\prime \prime \prime }-4 x^{3} y^{\prime \prime }+4 x^{2} y^{\prime }-1&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 34
ode:=4*x^4*diff(diff(diff(y(x),x),x),x)-4*x^3*diff(diff(y(x),x),x)+4*x^2*diff(y(x),x)-1 = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {18 x^{3} c_1 \ln \left (x \right )-1+\left (-9 c_1 +18 c_2 \right ) x^{3}+36 c_3 x}{36 x} \]
Mathematica. Time used: 0.029 (sec). Leaf size: 42
ode=-1 + 4*x^2*D[y[x],x] - 4*x^3*D[y[x],{x,2}] + 4*x^4*Derivative[3][y][x] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{4} (2 c_1-c_2) x^2+\frac {1}{2} c_2 x^2 \log (x)-\frac {1}{36 x}+c_3 \]
Sympy. Time used: 0.282 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*x**4*Derivative(y(x), (x, 3)) - 4*x**3*Derivative(y(x), (x, 2)) + 4*x**2*Derivative(y(x), x) - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + C_{2} x^{2} + C_{3} x^{2} \log {\left (x \right )} - \frac {1}{36 x} \]