60.4.20 problem 1475

Internal problem ID [11443]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 3, linear third order
Problem number : 1475
Date solved : Sunday, March 30, 2025 at 08:22:20 PM
CAS classification : [[_3rd_order, _with_linear_symmetries]]

\begin{align*} 4 y^{\prime \prime \prime }-8 y^{\prime \prime }-11 y^{\prime }-3 y+18 \,{\mathrm e}^{x}&=0 \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 23
ode:=4*diff(diff(diff(y(x),x),x),x)-8*diff(diff(y(x),x),x)-11*diff(y(x),x)-3*y(x)+18*exp(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{x}+c_1 \,{\mathrm e}^{3 x}+{\mathrm e}^{-\frac {x}{2}} \left (c_3 x +c_2 \right ) \]
Mathematica. Time used: 0.004 (sec). Leaf size: 37
ode=18*E^x - 3*y[x] - 11*D[y[x],x] - 8*D[y[x],{x,2}] + 4*Derivative[3][y][x] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{-x/2} \left (e^{3 x/2}+c_2 x+c_3 e^{7 x/2}+c_1\right ) \]
Sympy. Time used: 0.222 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-3*y(x) + 18*exp(x) - 11*Derivative(y(x), x) - 8*Derivative(y(x), (x, 2)) + 4*Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{3} e^{3 x} + \left (C_{1} + C_{2} x\right ) e^{- \frac {x}{2}} + e^{x} \]