Internal
problem
ID
[11442]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
3,
linear
third
order
Problem
number
:
1472
Date
solved
:
Sunday, March 30, 2025 at 08:22:19 PM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=diff(diff(diff(y(x),x),x),x)+f(x)*(x^2*diff(diff(y(x),x),x)-2*x*diff(y(x),x)+2*y(x)) = 0; dsolve(ode,y(x), singsol=all);
ode=f[x]*(2*y[x] - 2*x*D[y[x],x] + x^2*D[y[x],{x,2}]) + Derivative[3][y][x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") f = Function("f") ode = Eq((x**2*Derivative(y(x), (x, 2)) - 2*x*Derivative(y(x), x) + 2*y(x))*f(x) + Derivative(y(x), (x, 3)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -x*Derivative(y(x), (x, 2))/2 + Derivative(y(x), x) - y(x)/x - Derivative(y(x), (x, 3))/(2*x*f(x)) cannot be solved by the factorable group method