60.3.170 problem 1184

Internal problem ID [11166]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1184
Date solved : Sunday, March 30, 2025 at 07:44:44 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y-x^{4}+x^{2}&=0 \end{align*}

Maple. Time used: 0.005 (sec). Leaf size: 25
ode:=x^2*diff(diff(y(x),x),x)-4*x*diff(y(x),x)+6*y(x)-x^4+x^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {x^{2} \left (2 c_2 x +x^{2}+2 \ln \left (x \right )+2 c_1 +2\right )}{2} \]
Mathematica. Time used: 0.022 (sec). Leaf size: 30
ode=x^2 - x^4 + 6*y[x] - 4*x*D[y[x],x] + x^2*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{2} x^2 \left (x^2+2 \log (x)+2 c_2 x+2+2 c_1\right ) \]
Sympy. Time used: 0.298 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**4 + x**2*Derivative(y(x), (x, 2)) + x**2 - 4*x*Derivative(y(x), x) + 6*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x^{2} \left (C_{1} + C_{2} x + \frac {x^{2}}{2} + \log {\left (x \right )}\right ) \]