Internal
problem
ID
[11165]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1183
Date
solved
:
Sunday, March 30, 2025 at 07:44:41 PM
CAS
classification
:
[[_2nd_order, _exact, _linear, _nonhomogeneous]]
ode:=x^2*diff(diff(y(x),x),x)-3*x*diff(y(x),x)-5*y(x)-x^2*ln(x) = 0; dsolve(ode,y(x), singsol=all);
ode=-(x^2*Log[x]) - 5*y[x] - 3*x*D[y[x],x] + x^2*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**2*log(x) + x**2*Derivative(y(x), (x, 2)) - 3*x*Derivative(y(x), x) - 5*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)