Internal
problem
ID
[10942]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
946
Date
solved
:
Sunday, March 30, 2025 at 07:27:07 PM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x),G(x)]`], [_Abel, `2nd type`, `class C`]]
ode:=diff(y(x),x) = (-8*exp(-x^2)*y(x)+4*x^2*exp(-x^2)^2-8*exp(-x^2)+8*x^2*exp(-x^2)*y(x)-4*x^4*exp(-x^2)^2+8*x^2*exp(-x^2)-8*y(x)^3+12*x^2*exp(-x^2)*y(x)^2-6*y(x)*x^4*exp(-x^2)^2+x^6*exp(-x^2)^3)*x/(-8*y(x)+4*x^2*exp(-x^2)-8); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (x*(-8/E^x^2 + (4*x^2)/E^(2*x^2) + (8*x^2)/E^x^2 - (4*x^4)/E^(2*x^2) + x^6/E^(3*x^2) - (8*y[x])/E^x^2 + (8*x^2*y[x])/E^x^2 - (6*x^4*y[x])/E^(2*x^2) + (12*x^2*y[x]^2)/E^x^2 - 8*y[x]^3))/(-8 + (4*x^2)/E^x^2 - 8*y[x]); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x*(x**6*exp(-3*x**2) - 6*x**4*y(x)*exp(-2*x**2) - 4*x**4*exp(-2*x**2) + 12*x**2*y(x)**2*exp(-x**2) + 8*x**2*y(x)*exp(-x**2) + 8*x**2*exp(-x**2) + 4*x**2*exp(-2*x**2) - 8*y(x)**3 - 8*y(x)*exp(-x**2) - 8*exp(-x**2))/(4*x**2*exp(-x**2) - 8*y(x) - 8) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)