Internal
problem
ID
[10891]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
895
Date
solved
:
Sunday, March 30, 2025 at 07:20:26 PM
CAS
classification
:
[_rational, [_1st_order, `_with_symmetry_[F(x),G(x)]`], [_Abel, `2nd type`, `class C`]]
ode:=diff(y(x),x) = (-256*a*x^2*y(x)-32*a^2*x^6-256*a*x^2+512*y(x)^3+192*x^4*a*y(x)^2+24*y(x)*a^2*x^8+a^3*x^12)*x/(512*y(x)+64*a*x^4+512); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (x*(-256*a*x^2 - 32*a^2*x^6 + a^3*x^12 - 256*a*x^2*y[x] + 24*a^2*x^8*y[x] + 192*a*x^4*y[x]^2 + 512*y[x]^3))/(512 + 64*a*x^4 + 512*y[x]); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(-x*(a**3*x**12 + 24*a**2*x**8*y(x) - 32*a**2*x**6 + 192*a*x**4*y(x)**2 - 256*a*x**2*y(x) - 256*a*x**2 + 512*y(x)**3)/(64*a*x**4 + 512*y(x) + 512) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)