Internal
problem
ID
[10882]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
886
Date
solved
:
Sunday, March 30, 2025 at 07:19:12 PM
CAS
classification
:
[_rational, _Abel]
ode:=diff(y(x),x) = 1/x^4*(2*x^2-4*x^3*y(x)+1+x^4*y(x)^2+x^6*y(x)^3-3*y(x)^2*x^5+3*y(x)*x^4-x^3); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (1 + 2*x^2 - x^3 - 4*x^3*y[x] + 3*x^4*y[x] + x^4*y[x]^2 - 3*x^5*y[x]^2 + x^6*y[x]^3)/x^4; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - (x**6*y(x)**3 - 3*x**5*y(x)**2 + x**4*y(x)**2 + 3*x**4*y(x) - 4*x**3*y(x) - x**3 + 2*x**2 + 1)/x**4,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out