Internal
problem
ID
[10863]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
867
Date
solved
:
Sunday, March 30, 2025 at 07:17:28 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _Abel]
ode:=diff(y(x),x) = -2/3*x+1+y(x)^2+2/3*x^2*y(x)+1/9*x^4+y(x)^3+x^2*y(x)^2+1/3*y(x)*x^4+1/27*x^6; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == 1 - (2*x)/3 + x^4/9 + x^6/27 + (2*x^2*y[x])/3 + (x^4*y[x])/3 + y[x]^2 + x^2*y[x]^2 + y[x]^3; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**6/27 - x**4*y(x)/3 - x**4/9 - x**2*y(x)**2 - 2*x**2*y(x)/3 + 2*x/3 - y(x)**3 - y(x)**2 + Derivative(y(x), x) - 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out