60.2.288 problem 866

Internal problem ID [10862]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 866
Date solved : Sunday, March 30, 2025 at 07:16:47 PM
CAS classification : [[_1st_order, `_with_symmetry_[F(x),G(x)]`]]

\begin{align*} y^{\prime }&=-\frac {x}{2}-\frac {a}{2}+\sqrt {x^{2}+2 a x +a^{2}+4 y}+x^{2} \sqrt {x^{2}+2 a x +a^{2}+4 y}+x^{3} \sqrt {x^{2}+2 a x +a^{2}+4 y} \end{align*}

Maple. Time used: 0.213 (sec). Leaf size: 37
ode:=diff(y(x),x) = -1/2*x-1/2*a+(x^2+2*a*x+a^2+4*y(x))^(1/2)+x^2*(x^2+2*a*x+a^2+4*y(x))^(1/2)+x^3*(x^2+2*a*x+a^2+4*y(x))^(1/2); 
dsolve(ode,y(x), singsol=all);
 
\[ c_{1} +\frac {x^{4}}{2}+\frac {2 x^{3}}{3}+2 x -\sqrt {x^{2}+2 a x +a^{2}+4 y} = 0 \]
Mathematica. Time used: 0.884 (sec). Leaf size: 85
ode=D[y[x],x] == -1/2*a - x/2 + Sqrt[a^2 + 2*a*x + x^2 + 4*y[x]] + x^2*Sqrt[a^2 + 2*a*x + x^2 + 4*y[x]] + x^3*Sqrt[a^2 + 2*a*x + x^2 + 4*y[x]]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to -\frac {a^2}{4}-\frac {a x}{2}+\frac {x^8}{16}+\frac {x^7}{6}+\frac {x^6}{9}+\frac {x^5}{2}-\frac {1}{6} (-4+3 c_1) x^4-\frac {2 c_1 x^3}{3}+\frac {3 x^2}{4}-2 c_1 x+c_1{}^2 \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(a/2 - x**3*sqrt(a**2 + 2*a*x + x**2 + 4*y(x)) - x**2*sqrt(a**2 + 2*a*x + x**2 + 4*y(x)) + x/2 - sqrt(a**2 + 2*a*x + x**2 + 4*y(x)) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out