Internal
problem
ID
[10660]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
662
Date
solved
:
Sunday, March 30, 2025 at 06:16:30 PM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x),G(x)]`]]
ode:=diff(y(x),x) = 1/2*x+1/2+x^2*(x^2+2*x+1-4*y(x))^(1/2); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == 1/2 + x/2 + x^2*Sqrt[1 + 2*x + x^2 - 4*y[x]]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**2*sqrt(x**2 + 2*x - 4*y(x) + 1) - x/2 + Derivative(y(x), x) - 1/2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out