60.2.86 problem 662

Internal problem ID [10660]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 662
Date solved : Sunday, March 30, 2025 at 06:16:30 PM
CAS classification : [[_1st_order, `_with_symmetry_[F(x),G(x)]`]]

\begin{align*} y^{\prime }&=\frac {x}{2}+\frac {1}{2}+x^{2} \sqrt {x^{2}+2 x +1-4 y} \end{align*}

Maple. Time used: 0.098 (sec). Leaf size: 26
ode:=diff(y(x),x) = 1/2*x+1/2+x^2*(x^2+2*x+1-4*y(x))^(1/2); 
dsolve(ode,y(x), singsol=all);
 
\[ c_{1} -\frac {2 x^{3}}{3}-\sqrt {x^{2}+2 x +1-4 y} = 0 \]
Mathematica. Time used: 0.868 (sec). Leaf size: 37
ode=D[y[x],x] == 1/2 + x/2 + x^2*Sqrt[1 + 2*x + x^2 - 4*y[x]]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{36} \left (-4 x^6+24 c_1 x^3+9 x^2+18 x+9-36 c_1{}^2\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2*sqrt(x**2 + 2*x - 4*y(x) + 1) - x/2 + Derivative(y(x), x) - 1/2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out