Internal
problem
ID
[10659]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
661
Date
solved
:
Sunday, March 30, 2025 at 06:16:24 PM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x),G(x)]`]]
ode:=diff(y(x),x) = -1/2*a*x-1/2*b+x^2*(a^2*x^2+2*a*b*x+b^2+4*a*y(x)-4*c)^(1/2); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == -1/2*b - (a*x)/2 + x^2*Sqrt[b^2 - 4*c + 2*a*b*x + a^2*x^2 + 4*a*y[x]]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") y = Function("y") ode = Eq(a*x/2 + b/2 - x**2*sqrt(a**2*x**2 + 2*a*b*x + 4*a*y(x) + b**2 - 4*c) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)