Internal
problem
ID
[10617]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
619
Date
solved
:
Sunday, March 30, 2025 at 06:10:42 PM
CAS
classification
:
[`x=_G(y,y')`]
ode:=diff(y(x),x) = 6*y(x)/(8*y(x)^4+9*y(x)^3+12*y(x)^2+6*y(x)-F(-1/3*y(x)^4-1/2*y(x)^3-y(x)^2-y(x)+x)); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (6*y[x])/(-F[x - y[x] - y[x]^2 - y[x]^3/2 - y[x]^4/3] + 6*y[x] + 12*y[x]^2 + 9*y[x]^3 + 8*y[x]^4); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") F = Function("F") ode = Eq(Derivative(y(x), x) - 6*y(x)/(-F(x - y(x)**4/3 - y(x)**3/2 - y(x)**2 - y(x)) + 8*y(x)**4 + 9*y(x)**3 + 12*y(x)**2 + 6*y(x)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : multiple generators [sqrt(-32*(-23*C1 - 138*x - 52)**(1/3) - 92), sqrt(2*(-23*C1/64 - 69*x/32 - 13/16)**(1/3) - 23/8 + 75/(32*sqrt(-2*(-23*C1/64 - 69*x/32 - 13/16)**(1/3) - 23/16)))] No algorithms are implemented to solve equation sqrt(-2*(-23*C1/64 - 69*x/32 - 13/16)**(1/3) - 23/16)/2 + sqrt(2*(-23*C1/64 - 69*x/32 - 13/16)**(1/3) - 23/8 + 75/(32*sqrt(-2*(-23*C1/64 - 69*x/32 - 13/16)**(1/3) - 23/16)))/2 + d(x) + 3/8