60.2.42 problem 618

Internal problem ID [10616]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 618
Date solved : Sunday, March 30, 2025 at 06:10:36 PM
CAS classification : [`y=_G(x,y')`]

\begin{align*} y^{\prime }&=\frac {\left (y+1\right ) \left (\left (y-\ln \left (y+1\right )-\ln \left (x \right )\right ) x +1\right )}{y x} \end{align*}

Maple. Time used: 0.618 (sec). Leaf size: 37
ode:=diff(y(x),x) = (1+y(x))*((y(x)-ln(1+y(x))-ln(x))*x+1)/y(x)/x; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -\operatorname {LambertW}\left (-\frac {{\mathrm e}^{-1}}{x}\right )-1 \\ y &= -\operatorname {LambertW}\left (-\frac {{\mathrm e}^{-{\mathrm e}^{x} c_1 -1}}{x}\right )-1 \\ \end{align*}
Mathematica. Time used: 60.184 (sec). Leaf size: 25
ode=D[y[x],x] == ((1 + y[x])*(1 + x*(-Log[x] - Log[1 + y[x]] + y[x])))/(x*y[x]); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to -1-W\left (-\frac {e^{-1+c_1 e^x}}{x}\right ) \]
Sympy. Time used: 1.723 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - (x*(y(x) - log(x) - log(y(x) + 1)) + 1)*(y(x) + 1)/(x*y(x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = - W\left (- \frac {e^{C_{1} e^{x} - 1}}{x}\right ) - 1 \]