60.2.24 problem 600

Internal problem ID [10598]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 600
Date solved : Sunday, March 30, 2025 at 06:09:29 PM
CAS classification : [[_1st_order, `_with_symmetry_[F(x),G(y)]`]]

\begin{align*} y^{\prime }&=\frac {F \left (-\frac {-1+2 y \ln \left (x \right )}{y}\right ) y^{2}}{x} \end{align*}

Maple. Time used: 0.029 (sec). Leaf size: 53
ode:=diff(y(x),x) = F(-(-1+2*y(x)*ln(x))/y(x))*y(x)^2/x; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {1}{2 \ln \left (x \right )+\operatorname {RootOf}\left (F \left (\textit {\_Z} \right )+2\right )} \\ \int _{\textit {\_b}}^{y}\frac {1}{\left (F \left (\frac {1-2 \textit {\_a} \ln \left (x \right )}{\textit {\_a}}\right )+2\right ) \textit {\_a}^{2}}d \textit {\_a} -\ln \left (x \right )-c_1 &= 0 \\ \end{align*}
Mathematica. Time used: 0.197 (sec). Leaf size: 246
ode=D[y[x],x] == (F[(1 - 2*Log[x]*y[x])/y[x]]*y[x]^2)/x; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{y(x)}\left (-\int _1^x\left (\frac {2 \left (-\frac {2 \log (K[1])}{K[2]}-\frac {1-2 K[2] \log (K[1])}{K[2]^2}\right ) F''\left (\frac {1-2 K[2] \log (K[1])}{K[2]}\right )}{\left (F\left (\frac {1-2 K[2] \log (K[1])}{K[2]}\right )+2\right ) K[1]}-\frac {2 F\left (\frac {1-2 K[2] \log (K[1])}{K[2]}\right ) \left (-\frac {2 \log (K[1])}{K[2]}-\frac {1-2 K[2] \log (K[1])}{K[2]^2}\right ) F''\left (\frac {1-2 K[2] \log (K[1])}{K[2]}\right )}{\left (F\left (\frac {1-2 K[2] \log (K[1])}{K[2]}\right )+2\right )^2 K[1]}\right )dK[1]-\frac {2}{\left (F\left (\frac {1-2 K[2] \log (x)}{K[2]}\right )+2\right ) K[2]^2}\right )dK[2]+\int _1^x\frac {2 F\left (\frac {1-2 \log (K[1]) y(x)}{y(x)}\right )}{\left (F\left (\frac {1-2 \log (K[1]) y(x)}{y(x)}\right )+2\right ) K[1]}dK[1]=c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
F = Function("F") 
ode = Eq(Derivative(y(x), x) - F((-2*y(x)*log(x) + 1)/y(x))*y(x)**2/x,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - F(-2*log(x) + 1/y(x))*y(x)**2/x cannot be solved by the factorable group method