60.2.25 problem 601

Internal problem ID [10599]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 601
Date solved : Sunday, March 30, 2025 at 06:09:32 PM
CAS classification : [[_1st_order, `_with_symmetry_[F(x),G(y)]`]]

\begin{align*} y^{\prime }&=\frac {F \left (-\left (x -y\right ) \left (x +y\right )\right ) x}{y} \end{align*}

Maple. Time used: 0.041 (sec). Leaf size: 77
ode:=diff(y(x),x) = F(-(x-y(x))*(x+y(x)))*x/y(x); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \operatorname {RootOf}\left (F \left (\textit {\_Z}^{2}-x^{2}\right )-1\right ) \\ y &= \sqrt {x^{2}+\operatorname {RootOf}\left (-x^{2}+\int _{}^{\textit {\_Z}}\frac {1}{F \left (\textit {\_a} \right )-1}d \textit {\_a} +2 c_1 \right )} \\ y &= -\sqrt {x^{2}+\operatorname {RootOf}\left (-x^{2}+\int _{}^{\textit {\_Z}}\frac {1}{F \left (\textit {\_a} \right )-1}d \textit {\_a} +2 c_1 \right )} \\ \end{align*}
Mathematica. Time used: 0.218 (sec). Leaf size: 182
ode=D[y[x],x] == (x*F[(-x + y[x])*(x + y[x])])/y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{y(x)}\left (\frac {K[2]}{F((K[2]-x) (x+K[2]))-1}-\int _1^x\left (\frac {2 F((K[2]-K[1]) (K[1]+K[2])) K[1] K[2] F''((K[2]-K[1]) (K[1]+K[2]))}{(F((K[2]-K[1]) (K[1]+K[2]))-1)^2}-\frac {2 K[1] K[2] F''((K[2]-K[1]) (K[1]+K[2]))}{F((K[2]-K[1]) (K[1]+K[2]))-1}\right )dK[1]\right )dK[2]+\int _1^x-\frac {F((y(x)-K[1]) (K[1]+y(x))) K[1]}{F((y(x)-K[1]) (K[1]+y(x)))-1}dK[1]=c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
F = Function("F") 
ode = Eq(-x*F((-x + y(x))*(x + y(x)))/y(x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -x*F(-x**2 + y(x)**2)/y(x) + Derivative(y(x), x) cannot be solved by the factorable group method