60.1.532 problem 545

Internal problem ID [10546]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 545
Date solved : Sunday, March 30, 2025 at 05:59:09 PM
CAS classification : [_quadrature]

\begin{align*} {y^{\prime }}^{4}-\left (y-a \right )^{3} \left (y-b \right )^{2}&=0 \end{align*}

Maple. Time used: 0.042 (sec). Leaf size: 131
ode:=diff(y(x),x)^4-(y(x)-a)^3*(y(x)-b)^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= a \\ y &= b \\ x -\int _{}^{y}\frac {1}{\left (\left (\textit {\_a} -a \right )^{3} \left (\textit {\_a} -b \right )^{2}\right )^{{1}/{4}}}d \textit {\_a} -c_1 &= 0 \\ x -i \int _{}^{y}\frac {1}{\left (\left (\textit {\_a} -a \right )^{3} \left (\textit {\_a} -b \right )^{2}\right )^{{1}/{4}}}d \textit {\_a} -c_1 &= 0 \\ x +i \int _{}^{y}\frac {1}{\left (\left (\textit {\_a} -a \right )^{3} \left (\textit {\_a} -b \right )^{2}\right )^{{1}/{4}}}d \textit {\_a} -c_1 &= 0 \\ x +\int _{}^{y}\frac {1}{\left (\left (\textit {\_a} -a \right )^{3} \left (\textit {\_a} -b \right )^{2}\right )^{{1}/{4}}}d \textit {\_a} -c_1 &= 0 \\ \end{align*}
Mathematica. Time used: 1.109 (sec). Leaf size: 333
ode=-((-a + y[x])^3*(-b + y[x])^2) + D[y[x],x]^4==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \text {InverseFunction}\left [-\frac {4 \sqrt [4]{a-\text {$\#$1}} \sqrt {\frac {\text {$\#$1}-b}{a-b}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},\frac {a-\text {$\#$1}}{a-b}\right )}{\sqrt {b-\text {$\#$1}}}\&\right ]\left [-\sqrt [4]{-1} x+c_1\right ] \\ y(x)\to \text {InverseFunction}\left [-\frac {4 \sqrt [4]{a-\text {$\#$1}} \sqrt {\frac {\text {$\#$1}-b}{a-b}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},\frac {a-\text {$\#$1}}{a-b}\right )}{\sqrt {b-\text {$\#$1}}}\&\right ]\left [\sqrt [4]{-1} x+c_1\right ] \\ y(x)\to \text {InverseFunction}\left [-\frac {4 \sqrt [4]{a-\text {$\#$1}} \sqrt {\frac {\text {$\#$1}-b}{a-b}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},\frac {a-\text {$\#$1}}{a-b}\right )}{\sqrt {b-\text {$\#$1}}}\&\right ]\left [-(-1)^{3/4} x+c_1\right ] \\ y(x)\to \text {InverseFunction}\left [-\frac {4 \sqrt [4]{a-\text {$\#$1}} \sqrt {\frac {\text {$\#$1}-b}{a-b}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},\frac {a-\text {$\#$1}}{a-b}\right )}{\sqrt {b-\text {$\#$1}}}\&\right ]\left [(-1)^{3/4} x+c_1\right ] \\ y(x)\to a \\ y(x)\to b \\ \end{align*}
Sympy. Time used: 26.635 (sec). Leaf size: 218
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(-(-a + y(x))**3*(-b + y(x))**2 + Derivative(y(x), x)**4,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ - \frac {2 i \sqrt {- b + y{\left (x \right )}} {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {3}{4} \\ \frac {3}{2} \end {matrix}\middle | {\frac {\left (- b + y{\left (x \right )}\right ) e^{2 i \pi }}{\operatorname {polar\_lift}{\left (a - b \right )}}} \right )}}{\operatorname {polar\_lift}^{\frac {3}{4}}{\left (a - b \right )}} = C_{1} - \sqrt [4]{-1} x, \ - \frac {2 i \sqrt {- b + y{\left (x \right )}} {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {3}{4} \\ \frac {3}{2} \end {matrix}\middle | {\frac {\left (- b + y{\left (x \right )}\right ) e^{2 i \pi }}{\operatorname {polar\_lift}{\left (a - b \right )}}} \right )}}{\operatorname {polar\_lift}^{\frac {3}{4}}{\left (a - b \right )}} = C_{1} + \sqrt [4]{-1} x, \ - \frac {2 i \sqrt {- b + y{\left (x \right )}} {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {3}{4} \\ \frac {3}{2} \end {matrix}\middle | {\frac {\left (- b + y{\left (x \right )}\right ) e^{2 i \pi }}{\operatorname {polar\_lift}{\left (a - b \right )}}} \right )}}{\operatorname {polar\_lift}^{\frac {3}{4}}{\left (a - b \right )}} = C_{1} - \left (-1\right )^{\frac {3}{4}} x, \ - \frac {2 i \sqrt {- b + y{\left (x \right )}} {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {3}{4} \\ \frac {3}{2} \end {matrix}\middle | {\frac {\left (- b + y{\left (x \right )}\right ) e^{2 i \pi }}{\operatorname {polar\_lift}{\left (a - b \right )}}} \right )}}{\operatorname {polar\_lift}^{\frac {3}{4}}{\left (a - b \right )}} = C_{1} + \left (-1\right )^{\frac {3}{4}} x\right ] \]