Internal
problem
ID
[10545]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
linear
first
order
Problem
number
:
544
Date
solved
:
Sunday, March 30, 2025 at 05:57:03 PM
CAS
classification
:
[[_homogeneous, `class G`]]
ode:=x^7*y(x)^2*diff(y(x),x)^3-(3*x^6*y(x)^3-1)*diff(y(x),x)^2+3*x^5*y(x)^4*diff(y(x),x)-x^4*y(x)^5 = 0; dsolve(ode,y(x), singsol=all);
ode=-(x^4*y[x]^5) + 3*x^5*y[x]^4*D[y[x],x] - (-1 + 3*x^6*y[x]^3)*D[y[x],x]^2 + x^7*y[x]^2*D[y[x],x]^3==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**7*y(x)**2*Derivative(y(x), x)**3 + 3*x**5*y(x)**4*Derivative(y(x), x) - x**4*y(x)**5 - (3*x**6*y(x)**3 - 1)*Derivative(y(x), x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out