Internal
problem
ID
[10512]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
linear
first
order
Problem
number
:
511
Date
solved
:
Sunday, March 30, 2025 at 05:35:52 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries]]
ode:=(a^2*(x^2+y(x)^2)^(1/2)-x^2)*diff(y(x),x)^2+2*x*y(x)*diff(y(x),x)+a^2*(x^2+y(x)^2)^(1/2)-y(x)^2 = 0; dsolve(ode,y(x), singsol=all);
ode=-y[x]^2 + a^2*Sqrt[x^2 + y[x]^2] + 2*x*y[x]*D[y[x],x] + (-x^2 + a^2*Sqrt[x^2 + y[x]^2])*D[y[x],x]^2==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Too large to display
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(a**2*sqrt(x**2 + y(x)**2) + 2*x*y(x)*Derivative(y(x), x) + (a**2*sqrt(x**2 + y(x)**2) - x**2)*Derivative(y(x), x)**2 - y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out