60.1.308 problem 314

Internal problem ID [10322]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 314
Date solved : Sunday, March 30, 2025 at 04:09:32 PM
CAS classification : [_Bernoulli]

\begin{align*} x y^{3} y^{\prime }+y^{4}-x \sin \left (x \right )&=0 \end{align*}

Maple. Time used: 0.019 (sec). Leaf size: 156
ode:=x*y(x)^3*diff(y(x),x)+y(x)^4-x*sin(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {{\left (4 \left (-x^{4}+12 x^{2}-24\right ) \cos \left (x \right )+16 \left (x^{3}-6 x \right ) \sin \left (x \right )+c_1 \right )}^{{1}/{4}}}{x} \\ y &= -\frac {{\left (4 \left (-x^{4}+12 x^{2}-24\right ) \cos \left (x \right )+16 \left (x^{3}-6 x \right ) \sin \left (x \right )+c_1 \right )}^{{1}/{4}}}{x} \\ y &= -\frac {i {\left (4 \left (-x^{4}+12 x^{2}-24\right ) \cos \left (x \right )+16 \left (x^{3}-6 x \right ) \sin \left (x \right )+c_1 \right )}^{{1}/{4}}}{x} \\ y &= \frac {i {\left (4 \left (-x^{4}+12 x^{2}-24\right ) \cos \left (x \right )+16 \left (x^{3}-6 x \right ) \sin \left (x \right )+c_1 \right )}^{{1}/{4}}}{x} \\ \end{align*}
Mathematica. Time used: 0.329 (sec). Leaf size: 136
ode=-(x*Sin[x]) + y[x]^4 + x*y[x]^3*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {\sqrt [4]{4 \int _1^xK[1]^4 \sin (K[1])dK[1]+c_1}}{x} \\ y(x)\to -\frac {i \sqrt [4]{4 \int _1^xK[1]^4 \sin (K[1])dK[1]+c_1}}{x} \\ y(x)\to \frac {i \sqrt [4]{4 \int _1^xK[1]^4 \sin (K[1])dK[1]+c_1}}{x} \\ y(x)\to \frac {\sqrt [4]{4 \int _1^xK[1]^4 \sin (K[1])dK[1]+c_1}}{x} \\ \end{align*}
Sympy. Time used: 9.975 (sec). Leaf size: 197
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*y(x)**3*Derivative(y(x), x) - x*sin(x) + y(x)**4,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - i \sqrt [4]{\frac {C_{1}}{x^{4}} - 4 \cos {\left (x \right )} + \frac {16 \sin {\left (x \right )}}{x} + \frac {48 \cos {\left (x \right )}}{x^{2}} - \frac {96 \sin {\left (x \right )}}{x^{3}} - \frac {96 \cos {\left (x \right )}}{x^{4}}}, \ y{\left (x \right )} = i \sqrt [4]{\frac {C_{1}}{x^{4}} - 4 \cos {\left (x \right )} + \frac {16 \sin {\left (x \right )}}{x} + \frac {48 \cos {\left (x \right )}}{x^{2}} - \frac {96 \sin {\left (x \right )}}{x^{3}} - \frac {96 \cos {\left (x \right )}}{x^{4}}}, \ y{\left (x \right )} = - \sqrt [4]{\frac {C_{1}}{x^{4}} - 4 \cos {\left (x \right )} + \frac {16 \sin {\left (x \right )}}{x} + \frac {48 \cos {\left (x \right )}}{x^{2}} - \frac {96 \sin {\left (x \right )}}{x^{3}} - \frac {96 \cos {\left (x \right )}}{x^{4}}}, \ y{\left (x \right )} = \sqrt [4]{\frac {C_{1}}{x^{4}} - 4 \cos {\left (x \right )} + \frac {16 \sin {\left (x \right )}}{x} + \frac {48 \cos {\left (x \right )}}{x^{2}} - \frac {96 \sin {\left (x \right )}}{x^{3}} - \frac {96 \cos {\left (x \right )}}{x^{4}}}\right ] \]