60.1.307 problem 313

Internal problem ID [10321]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 313
Date solved : Sunday, March 30, 2025 at 04:09:28 PM
CAS classification : [_rational]

\begin{align*} \left (2 a y^{3}+3 a x y^{2}-b \,x^{3}+c \,x^{2}\right ) y^{\prime }-a y^{3}+c y^{2}+3 b \,x^{2} y+2 b \,x^{3}&=0 \end{align*}

Maple. Time used: 0.067 (sec). Leaf size: 591
ode:=(2*a*y(x)^3+3*a*x*y(x)^2-b*x^3+c*x^2)*diff(y(x),x)-a*y(x)^3+c*y(x)^2+3*b*x^2*y(x)+2*b*x^3 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -\frac {12^{{1}/{3}} \left (-{\left (\left (-9 b \,x^{3}+9 c_1 x +\sqrt {\frac {81 a \,b^{2} x^{6}-162 c_1 a b \,x^{4}+12 c^{3} x^{3}+81 c_1^{2} a \,x^{2}-36 c_1 \,c^{2} x^{2}+36 c_1^{2} c x -12 c_1^{3}}{a}}\right ) a^{2}\right )}^{{2}/{3}}+\left (c x -c_1 \right ) a 12^{{1}/{3}}\right )}{6 {\left (\left (-9 b \,x^{3}+9 c_1 x +\sqrt {\frac {81 a \,b^{2} x^{6}-162 c_1 a b \,x^{4}+12 c^{3} x^{3}+81 c_1^{2} a \,x^{2}-36 c_1 \,c^{2} x^{2}+36 c_1^{2} c x -12 c_1^{3}}{a}}\right ) a^{2}\right )}^{{1}/{3}} a} \\ y &= -\frac {2^{{2}/{3}} 3^{{1}/{3}} \left (\left (1+i \sqrt {3}\right ) {\left (\left (-9 b \,x^{3}+9 c_1 x +\sqrt {\frac {81 a \,b^{2} x^{6}-162 c_1 a b \,x^{4}+12 c^{3} x^{3}+81 c_1^{2} a \,x^{2}-36 c_1 \,c^{2} x^{2}+36 c_1^{2} c x -12 c_1^{3}}{a}}\right ) a^{2}\right )}^{{2}/{3}}+\left (i 3^{{5}/{6}}-3^{{1}/{3}}\right ) 2^{{2}/{3}} a \left (c x -c_1 \right )\right )}{12 {\left (\left (-9 b \,x^{3}+9 c_1 x +\sqrt {\frac {81 a \,b^{2} x^{6}-162 c_1 a b \,x^{4}+12 c^{3} x^{3}+81 c_1^{2} a \,x^{2}-36 c_1 \,c^{2} x^{2}+36 c_1^{2} c x -12 c_1^{3}}{a}}\right ) a^{2}\right )}^{{1}/{3}} a} \\ y &= \frac {2^{{2}/{3}} 3^{{1}/{3}} \left (\left (i \sqrt {3}-1\right ) {\left (\left (-9 b \,x^{3}+9 c_1 x +\sqrt {\frac {81 a \,b^{2} x^{6}-162 c_1 a b \,x^{4}+12 c^{3} x^{3}+81 c_1^{2} a \,x^{2}-36 c_1 \,c^{2} x^{2}+36 c_1^{2} c x -12 c_1^{3}}{a}}\right ) a^{2}\right )}^{{2}/{3}}+2^{{2}/{3}} a \left (c x -c_1 \right ) \left (i 3^{{5}/{6}}+3^{{1}/{3}}\right )\right )}{12 {\left (\left (-9 b \,x^{3}+9 c_1 x +\sqrt {\frac {81 a \,b^{2} x^{6}-162 c_1 a b \,x^{4}+12 c^{3} x^{3}+81 c_1^{2} a \,x^{2}-36 c_1 \,c^{2} x^{2}+36 c_1^{2} c x -12 c_1^{3}}{a}}\right ) a^{2}\right )}^{{1}/{3}} a} \\ \end{align*}
Mathematica. Time used: 0.338 (sec). Leaf size: 164
ode=2*b*x^3 + 3*b*x^2*y[x] + c*y[x]^2 - a*y[x]^3 + (c*x^2 - b*x^3 + 3*a*x*y[x]^2 + 2*a*y[x]^3)*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{y(x)}\left (a x-2 a K[2]-\int _1^x\left (b+\frac {3 a K[2]^2-3 b K[2]^2-2 c K[2]}{(K[1]+K[2])^2}-\frac {2 \left (a K[2]^3-b K[2]^3-c K[2]^2\right )}{(K[1]+K[2])^3}\right )dK[1]+\frac {-a x^3+b x^3-c x^2}{(x+K[2])^2}\right )dK[2]+\int _1^x\left (-2 b K[1]+b y(x)+\frac {a y(x)^3-b y(x)^3-c y(x)^2}{(K[1]+y(x))^2}\right )dK[1]=c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
y = Function("y") 
ode = Eq(-a*y(x)**3 + 2*b*x**3 + 3*b*x**2*y(x) + c*y(x)**2 + (3*a*x*y(x)**2 + 2*a*y(x)**3 - b*x**3 + c*x**2)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out