60.1.293 problem 299

Internal problem ID [10307]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 299
Date solved : Sunday, March 30, 2025 at 03:58:29 PM
CAS classification : [[_homogeneous, `class G`], _exact, _rational]

\begin{align*} \left (3 x y^{2}-x^{2}\right ) y^{\prime }+y^{3}-2 x y&=0 \end{align*}

Maple. Time used: 0.123 (sec). Leaf size: 238
ode:=(3*x*y(x)^2-x^2)*diff(y(x),x)+y(x)^3-2*x*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {12^{{1}/{3}} \left (x^{3} 12^{{1}/{3}}+{\left (\left (\sqrt {-12 x^{5}+81 c_1^{2}}+9 c_1 \right ) x^{2}\right )}^{{2}/{3}}\right )}{6 x {\left (\left (\sqrt {-12 x^{5}+81 c_1^{2}}+9 c_1 \right ) x^{2}\right )}^{{1}/{3}}} \\ y &= \frac {3^{{1}/{3}} 2^{{2}/{3}} \left (\left (-i \sqrt {3}-1\right ) {\left (\left (\sqrt {-12 x^{5}+81 c_1^{2}}+9 c_1 \right ) x^{2}\right )}^{{2}/{3}}+x^{3} 2^{{2}/{3}} \left (i 3^{{5}/{6}}-3^{{1}/{3}}\right )\right )}{12 {\left (\left (\sqrt {-12 x^{5}+81 c_1^{2}}+9 c_1 \right ) x^{2}\right )}^{{1}/{3}} x} \\ y &= -\frac {\left (\left (1-i \sqrt {3}\right ) {\left (\left (\sqrt {-12 x^{5}+81 c_1^{2}}+9 c_1 \right ) x^{2}\right )}^{{2}/{3}}+x^{3} 2^{{2}/{3}} \left (i 3^{{5}/{6}}+3^{{1}/{3}}\right )\right ) 3^{{1}/{3}} 2^{{2}/{3}}}{12 {\left (\left (\sqrt {-12 x^{5}+81 c_1^{2}}+9 c_1 \right ) x^{2}\right )}^{{1}/{3}} x} \\ \end{align*}
Mathematica. Time used: 35.373 (sec). Leaf size: 328
ode=(3*x*y[x]^2-x^2)*D[y[x],x]+y[x]^3-2*x*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {2 \sqrt [3]{3} x^3+\sqrt [3]{2} \left (9 c_1 x^2+\sqrt {-12 x^9+81 c_1{}^2 x^4}\right ){}^{2/3}}{6^{2/3} x \sqrt [3]{9 c_1 x^2+\sqrt {-12 x^9+81 c_1{}^2 x^4}}} \\ y(x)\to \frac {2 \sqrt [3]{2} \sqrt [6]{3} \left (\sqrt {3}+3 i\right ) x^3+\sqrt [3]{3} \left (1-i \sqrt {3}\right ) \left (18 c_1 x^2+2 \sqrt {-12 x^9+81 c_1{}^2 x^4}\right ){}^{2/3}}{12 x \sqrt [3]{9 c_1 x^2+\sqrt {-12 x^9+81 c_1{}^2 x^4}}} \\ y(x)\to \frac {2 \sqrt [3]{2} \sqrt [6]{3} \left (\sqrt {3}-3 i\right ) x^3+\sqrt [3]{3} \left (1+i \sqrt {3}\right ) \left (18 c_1 x^2+2 \sqrt {-12 x^9+81 c_1{}^2 x^4}\right ){}^{2/3}}{12 x \sqrt [3]{9 c_1 x^2+\sqrt {-12 x^9+81 c_1{}^2 x^4}}} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*x*y(x) + (-x**2 + 3*x*y(x)**2)*Derivative(y(x), x) + y(x)**3,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out