60.1.294 problem 300

Internal problem ID [10308]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 300
Date solved : Sunday, March 30, 2025 at 03:58:32 PM
CAS classification : [[_homogeneous, `class G`], _exact, _rational, _Bernoulli]

\begin{align*} 6 x y^{2} y^{\prime }+2 y^{3}+x&=0 \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 90
ode:=6*x*y(x)^2*diff(y(x),x)+2*y(x)^3+x = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {2^{{1}/{3}} {\left (-\left (x^{2}-4 c_1 \right ) x^{2}\right )}^{{1}/{3}}}{2 x} \\ y &= -\frac {2^{{1}/{3}} {\left (-\left (x^{2}-4 c_1 \right ) x^{2}\right )}^{{1}/{3}} \left (1+i \sqrt {3}\right )}{4 x} \\ y &= \frac {2^{{1}/{3}} {\left (-\left (x^{2}-4 c_1 \right ) x^{2}\right )}^{{1}/{3}} \left (i \sqrt {3}-1\right )}{4 x} \\ \end{align*}
Mathematica. Time used: 0.227 (sec). Leaf size: 99
ode=6*x*y[x]^2*D[y[x],x]+2*y[x]^3+x==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {\sqrt [3]{-x^2+4 c_1}}{2^{2/3} \sqrt [3]{x}} \\ y(x)\to -\frac {\sqrt [3]{-1} \sqrt [3]{-x^2+4 c_1}}{2^{2/3} \sqrt [3]{x}} \\ y(x)\to \frac {(-1)^{2/3} \sqrt [3]{-x^2+4 c_1}}{2^{2/3} \sqrt [3]{x}} \\ \end{align*}
Sympy. Time used: 1.385 (sec). Leaf size: 70
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(6*x*y(x)**2*Derivative(y(x), x) + x + 2*y(x)**3,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \frac {\sqrt [3]{2} \sqrt [3]{\frac {C_{1}}{x} - x}}{2}, \ y{\left (x \right )} = \frac {\sqrt [3]{2} \left (-1 - \sqrt {3} i\right ) \sqrt [3]{\frac {C_{1}}{x} - x}}{4}, \ y{\left (x \right )} = \frac {\sqrt [3]{2} \left (-1 + \sqrt {3} i\right ) \sqrt [3]{\frac {C_{1}}{x} - x}}{4}\right ] \]