60.1.226 problem 231

Internal problem ID [10240]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 231
Date solved : Sunday, March 30, 2025 at 03:33:40 PM
CAS classification : [[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} \left (a y+b x +c \right ) y^{\prime }+\alpha y+\beta x +\gamma &=0 \end{align*}

Maple. Time used: 0.086 (sec). Leaf size: 236
ode:=(a*y(x)+b*x+c)*diff(y(x),x)+alpha*y(x)+beta*x+gamma = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {-\left (\left (\beta x +\gamma \right ) a +\left (-b x -c \right ) \alpha \right ) \sqrt {4 a \beta -\alpha ^{2}-2 \alpha b -b^{2}}\, \tan \left (\operatorname {RootOf}\left (\sqrt {4 a \beta -\alpha ^{2}-2 \alpha b -b^{2}}\, \ln \left (\frac {\left (a \beta x -\alpha b x +a \gamma -\alpha c \right )^{2} \left (4 a \beta -\alpha ^{2}-2 \alpha b -b^{2}\right ) \sec \left (\textit {\_Z} \right )^{2}}{a}\right )-2 \sqrt {4 a \beta -\alpha ^{2}-2 \alpha b -b^{2}}\, \ln \left (2\right )+2 c_1 \sqrt {4 a \beta -\alpha ^{2}-2 \alpha b -b^{2}}+2 \textit {\_Z} \alpha -2 \textit {\_Z} b \right )\right )+\left (b x +c \right ) \alpha ^{2}+\left (\left (-\beta x -\gamma \right ) a +b \left (b x +c \right )\right ) \alpha -a \left (\left (\beta x -\gamma \right ) b +2 \beta c \right )}{2 a \left (a \beta -\alpha b \right )} \]
Mathematica. Time used: 1.777 (sec). Leaf size: 260
ode=(a*y[x]+b*x+c)*D[y[x],x]+\[Alpha]*y[x]+\[Beta]*x+\[Gamma]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\frac {(b-\alpha )^2 \left (-\frac {2 \arctan \left (\frac {\frac {2 (a (\gamma +\beta x)-\alpha b x+\alpha (-c))}{a y(x)+b x+c}+\alpha -b}{(\alpha -b) \sqrt {\frac {4 (a \beta -\alpha b)}{(b-\alpha )^2}-1}}\right )}{\sqrt {\frac {4 (a \beta -\alpha b)}{(b-\alpha )^2}-1}}-\log \left (\frac {(a y(x)+b x+c) \left ((a (\gamma +\beta x)-\alpha b x+\alpha (-c)) \left (\frac {a (\gamma +\beta x)-\alpha b x+\alpha (-c)}{a y(x)+b x+c}+\alpha -b\right )-(\alpha b-a \beta ) (a y(x)+b x+c)\right )}{(-a (\gamma +\beta x)+\alpha b x+\alpha c)^2}\right )\right )}{2 (a \beta -\alpha b)}=\frac {(b-\alpha )^2 \log (a (\gamma +\beta x)-\alpha b x+\alpha (-c))}{a \beta -\alpha b}+c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
Alpha = symbols("Alpha") 
BETA = symbols("BETA") 
Gamma = symbols("Gamma") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
y = Function("y") 
ode = Eq(Alpha*y(x) + BETA*x + Gamma + (a*y(x) + b*x + c)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out