60.1.227 problem 232

Internal problem ID [10241]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 232
Date solved : Sunday, March 30, 2025 at 03:33:49 PM
CAS classification : [[_homogeneous, `class A`], _rational, _Bernoulli]

\begin{align*} x y y^{\prime }+y^{2}+x^{2}&=0 \end{align*}

Maple. Time used: 0.005 (sec). Leaf size: 39
ode:=x*y(x)*diff(y(x),x)+y(x)^2+x^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -\frac {\sqrt {-2 x^{4}+4 c_1}}{2 x} \\ y &= \frac {\sqrt {-2 x^{4}+4 c_1}}{2 x} \\ \end{align*}
Mathematica. Time used: 0.221 (sec). Leaf size: 46
ode=x*y[x]*D[y[x],x]+y[x]^2+x^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {\sqrt {-\frac {x^4}{2}+c_1}}{x} \\ y(x)\to \frac {\sqrt {-\frac {x^4}{2}+c_1}}{x} \\ \end{align*}
Sympy. Time used: 0.372 (sec). Leaf size: 32
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2 + x*y(x)*Derivative(y(x), x) + y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \frac {\sqrt {C_{1} - 2 x^{4}}}{2 x}, \ y{\left (x \right )} = \frac {\sqrt {C_{1} - 2 x^{4}}}{2 x}\right ] \]