Internal
problem
ID
[55]
Book
:
Elementary
Differential
Equations.
By
C.
Henry
Edwards,
David
E.
Penney
and
David
Calvis.
6th
edition.
2008
Section
:
Chapter
1.
First
order
differential
equations.
Section
1.4
(separable
equations).
Problems
at
page
43
Problem
number
:
15
Date
solved
:
Saturday, March 29, 2025 at 04:28:05 PM
CAS
classification
:
[_separable]
\begin{align*} y^{\prime }&=\frac {\left (x -1\right ) y^{5}}{x^{2} \left (2 y^{3}-y\right )} \end{align*}
\begin{align*}
y(x)\to -\frac {\frac {8 \sqrt [3]{2} x^2}{\sqrt [3]{16 x^3-9 x^3 \log ^2(x)-9 c_1{}^2 x^3-18 c_1 x^2+3 \sqrt {x^2 (x \log (x)+c_1 x+1){}^2 \left (9 x^2 \log ^2(x)+\left (-32+9 c_1{}^2\right ) x^2+18 c_1 x+18 x (1+c_1 x) \log (x)+9\right )}-18 x^2 (1+c_1 x) \log (x)-9 x}}+2^{2/3} \sqrt [3]{16 x^3-9 x^3 \log ^2(x)-9 c_1{}^2 x^3-18 c_1 x^2+3 \sqrt {x^2 (x \log (x)+c_1 x+1){}^2 \left (9 x^2 \log ^2(x)+\left (-32+9 c_1{}^2\right ) x^2+18 c_1 x+18 x (1+c_1 x) \log (x)+9\right )}-18 x^2 (1+c_1 x) \log (x)-9 x}+4 x}{6 (x \log (x)+c_1 x+1)} \\
y(x)\to \frac {\frac {8 \sqrt [3]{2} \left (1+i \sqrt {3}\right ) x^2}{\sqrt [3]{16 x^3-9 x^3 \log ^2(x)-9 c_1{}^2 x^3-18 c_1 x^2+3 \sqrt {x^2 (x \log (x)+c_1 x+1){}^2 \left (9 x^2 \log ^2(x)+\left (-32+9 c_1{}^2\right ) x^2+18 c_1 x+18 x (1+c_1 x) \log (x)+9\right )}-18 x^2 (1+c_1 x) \log (x)-9 x}}+2^{2/3} \left (1-i \sqrt {3}\right ) \sqrt [3]{16 x^3-9 x^3 \log ^2(x)-9 c_1{}^2 x^3-18 c_1 x^2+3 \sqrt {x^2 (x \log (x)+c_1 x+1){}^2 \left (9 x^2 \log ^2(x)+\left (-32+9 c_1{}^2\right ) x^2+18 c_1 x+18 x (1+c_1 x) \log (x)+9\right )}-18 x^2 (1+c_1 x) \log (x)-9 x}-8 x}{12 (x \log (x)+c_1 x+1)} \\
y(x)\to \frac {\frac {8 \sqrt [3]{2} \left (1-i \sqrt {3}\right ) x^2}{\sqrt [3]{16 x^3-9 x^3 \log ^2(x)-9 c_1{}^2 x^3-18 c_1 x^2+3 \sqrt {x^2 (x \log (x)+c_1 x+1){}^2 \left (9 x^2 \log ^2(x)+\left (-32+9 c_1{}^2\right ) x^2+18 c_1 x+18 x (1+c_1 x) \log (x)+9\right )}-18 x^2 (1+c_1 x) \log (x)-9 x}}+2^{2/3} \left (1+i \sqrt {3}\right ) \sqrt [3]{16 x^3-9 x^3 \log ^2(x)-9 c_1{}^2 x^3-18 c_1 x^2+3 \sqrt {x^2 (x \log (x)+c_1 x+1){}^2 \left (9 x^2 \log ^2(x)+\left (-32+9 c_1{}^2\right ) x^2+18 c_1 x+18 x (1+c_1 x) \log (x)+9\right )}-18 x^2 (1+c_1 x) \log (x)-9 x}-8 x}{12 (x \log (x)+c_1 x+1)} \\
y(x)\to 0 \\
\end{align*}