7.3.14 problem 14

Internal problem ID [54]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 1. First order differential equations. Section 1.4 (separable equations). Problems at page 43
Problem number : 14
Date solved : Saturday, March 29, 2025 at 04:28:02 PM
CAS classification : [_separable]

\begin{align*} y^{\prime }&=\frac {1+\sqrt {x}}{1+\sqrt {y}} \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 21
ode:=diff(y(x),x) = (1+x^(1/2))/(1+y(x)^(1/2)); 
dsolve(ode,y(x), singsol=all);
 
\[ x +\frac {2 x^{{3}/{2}}}{3}-y-\frac {2 y^{{3}/{2}}}{3}+c_1 = 0 \]
Mathematica. Time used: 5.9 (sec). Leaf size: 796
ode=D[y[x],x]==(1+Sqrt[x])/(1+Sqrt[y[x]]); 
DSolve[ode,y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {-16 x^{3/2}+\left (96 x^{5/2}+24 (-3+4 c_1) x^{3/2}+8 \sqrt {\left (2 x^{3/2}+3 x-1+3 c_1\right ) \left (2 x^{3/2}+3 x+3 c_1\right ){}^3}+32 x^3+72 x^2+36 (-3+4 c_1) x+27+72 c_1{}^2-108 c_1\right ){}^{2/3}+3 \sqrt [3]{96 x^{5/2}+24 (-3+4 c_1) x^{3/2}+8 \sqrt {\left (2 x^{3/2}+3 x-1+3 c_1\right ) \left (2 x^{3/2}+3 x+3 c_1\right ){}^3}+32 x^3+72 x^2+36 (-3+4 c_1) x+27+72 c_1{}^2-108 c_1}-24 x+9-24 c_1}{4 \sqrt [3]{96 x^{5/2}+24 (-3+4 c_1) x^{3/2}+8 \sqrt {\left (2 x^{3/2}+3 x-1+3 c_1\right ) \left (2 x^{3/2}+3 x+3 c_1\right ){}^3}+32 x^3+72 x^2+36 (-3+4 c_1) x+27+72 c_1{}^2-108 c_1}} \\ y(x)\to \frac {1}{16} \left (\frac {2 \left (1+i \sqrt {3}\right ) \left (16 x^{3/2}+24 x-9+24 c_1\right )}{\sqrt [3]{96 x^{5/2}+24 (-3+4 c_1) x^{3/2}+8 \sqrt {\left (2 x^{3/2}+3 x-1+3 c_1\right ) \left (2 x^{3/2}+3 x+3 c_1\right ){}^3}+32 x^3+72 x^2+36 (-3+4 c_1) x+27+72 c_1{}^2-108 c_1}}+2 i \left (\sqrt {3}+i\right ) \sqrt [3]{96 x^{5/2}+24 (-3+4 c_1) x^{3/2}+8 \sqrt {\left (2 x^{3/2}+3 x-1+3 c_1\right ) \left (2 x^{3/2}+3 x+3 c_1\right ){}^3}+32 x^3+72 x^2+36 (-3+4 c_1) x+27+72 c_1{}^2-108 c_1}+12\right ) \\ y(x)\to \frac {1}{16} \left (\frac {2 \left (1-i \sqrt {3}\right ) \left (16 x^{3/2}+24 x-9+24 c_1\right )}{\sqrt [3]{96 x^{5/2}+24 (-3+4 c_1) x^{3/2}+8 \sqrt {\left (2 x^{3/2}+3 x-1+3 c_1\right ) \left (2 x^{3/2}+3 x+3 c_1\right ){}^3}+32 x^3+72 x^2+36 (-3+4 c_1) x+27+72 c_1{}^2-108 c_1}}-2 \left (1+i \sqrt {3}\right ) \sqrt [3]{96 x^{5/2}+24 (-3+4 c_1) x^{3/2}+8 \sqrt {\left (2 x^{3/2}+3 x-1+3 c_1\right ) \left (2 x^{3/2}+3 x+3 c_1\right ){}^3}+32 x^3+72 x^2+36 (-3+4 c_1) x+27+72 c_1{}^2-108 c_1}+12\right ) \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((-sqrt(x) - 1)/(sqrt(y(x)) + 1) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out