Internal
problem
ID
[6581]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
4.
THE
NONLINEAR
EQUATION
OF
SECOND
ORDER,
page
380
Problem
number
:
282
Date
solved
:
Tuesday, September 30, 2025 at 03:11:08 PM
CAS
classification
:
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_poly_yn]]
ode:=y(x)+x*diff(y(x),x)+2*(x+y(x))*diff(y(x),x)^2+(y(x)^2+2*x^2*diff(y(x),x))*diff(diff(y(x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=y[x] + x*D[y[x],x] + 2*(x + y[x])*D[y[x],x]^2 + (y[x]^2 + 2*x^2*D[y[x],x])*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*Derivative(y(x), x) + (2*x + 2*y(x))*Derivative(y(x), x)**2 + (2*x**2*Derivative(y(x), x) + y(x)**2)*Derivative(y(x), (x, 2)) + y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-x*(2*x*Derivative(y(x), (x, 2)) + 1) + s