23.4.278 problem 281

Internal problem ID [6580]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 4. THE NONLINEAR EQUATION OF SECOND ORDER, page 380
Problem number : 281
Date solved : Tuesday, September 30, 2025 at 03:11:02 PM
CAS classification : [[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

\begin{align*} y^{\prime } y^{\prime \prime }&=x y^{2}+x^{2} y y^{\prime } \end{align*}
Maple
ode:=diff(y(x),x)*diff(diff(y(x),x),x) = x*y(x)^2+x^2*y(x)*diff(y(x),x); 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=D[y[x],x]*D[y[x],{x,2}] == x*y[x]^2 + x^2*y[x]*D[y[x],x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2*y(x)*Derivative(y(x), x) - x*y(x)**2 + Derivative(y(x), x)*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -x*y(x)**2/(-x**2*y(x) + Derivative(y(x), (x, 2))) + Derivative(