4.4.26 Problems 2501 to 2600

Table 4.595: Second ODE homogeneous ODE

#

ODE

Mathematica

Maple

Sympy

11275

\[ {} x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

11276

\[ {} 2 x^{2} y^{\prime \prime }+3 x y^{\prime }-x y = 0 \]

11277

\[ {} x^{2} y^{\prime \prime }+\left (3 x^{2}+2 x \right ) y^{\prime }-2 y = 0 \]

11278

\[ {} 2 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+x \left (11 x^{2}+11 x +9\right ) y^{\prime }+\left (7 x^{2}+10 x +6\right ) y = 0 \]

11279

\[ {} x y^{\prime \prime }+y^{\prime } \left (1+x \right )+2 y = 0 \]

11280

\[ {} x^{2} \left (x^{2}-2 x +1\right ) y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (x +4\right ) y = 0 \]

11281

\[ {} 2 x^{2} \left (x +2\right ) y^{\prime \prime }+5 x^{2} y^{\prime }+\left (1+x \right ) y = 0 \]

11282

\[ {} x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

11283

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

11284

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }-\left (x^{2}+\frac {5}{4}\right ) y = 0 \]

11285

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

11286

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+4 x^{4} y = 0 \]

11287

\[ {} y^{\prime \prime } = \left (x^{2}+3\right ) y \]

11288

\[ {} y^{\prime \prime }+2 x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

11289

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

11290

\[ {} 4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 0 \]

11291

\[ {} y^{\prime \prime } = 0 \]

11292

\[ {} y^{\prime \prime } = \frac {2 y}{x^{2}} \]

11293

\[ {} y^{\prime \prime } = \frac {6 y}{x^{2}} \]

11294

\[ {} y^{\prime \prime } = \left (-\frac {3}{16 x^{2}}-\frac {2}{9 \left (x -1\right )^{2}}+\frac {3}{16 \left (x -1\right ) x}\right ) y \]

11295

\[ {} y^{\prime \prime } = \frac {20 y}{x^{2}} \]

11296

\[ {} y^{\prime \prime } = \frac {12 y}{x^{2}} \]

11297

\[ {} y^{\prime \prime }-\frac {y}{4 x^{2}} = 0 \]

11298

\[ {} x y^{\prime \prime }-\left (2 x +2\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

11299

\[ {} y^{\prime \prime }+\frac {y}{x^{2}} = 0 \]

11300

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime }+y = 0 \]

11301

\[ {} \left (x^{2}-x \right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

11302

\[ {} x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }-x \left (4 x^{2}+3\right ) y^{\prime }+\left (-2 x^{2}+2\right ) y = 0 \]

11303

\[ {} y^{\prime \prime } = \frac {\left (4 x^{6}-8 x^{5}+12 x^{4}+4 x^{3}+7 x^{2}-20 x +4\right ) y}{4 x^{4}} \]

11304

\[ {} y^{\prime \prime } = \left (\frac {6}{x^{2}}-1\right ) y \]

11305

\[ {} y^{\prime \prime } = \left (\frac {x^{2}}{4}-\frac {11}{2}\right ) y \]

11306

\[ {} y^{\prime \prime } = \left (\frac {1}{x}-\frac {3}{16 x^{2}}\right ) y \]

11307

\[ {} y^{\prime \prime } = \left (-\frac {3}{16 x^{2}}-\frac {2}{9 \left (x -1\right )^{2}}+\frac {3}{16 \left (x -1\right ) x}\right ) y \]

11308

\[ {} y^{\prime \prime } = -\frac {\left (5 x^{2}+27\right ) y}{36 \left (x^{2}-1\right )^{2}} \]

11309

\[ {} y^{\prime \prime } = -\frac {y}{4 x^{2}} \]

11310

\[ {} y^{\prime \prime } = \left (x^{2}+3\right ) y \]

11311

\[ {} x^{2} y^{\prime \prime } = 2 y \]

11312

\[ {} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+2\right ) y = 0 \]

11313

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

11314

\[ {} \left (x -2\right )^{2} y^{\prime \prime }-\left (x -2\right ) y^{\prime }-3 y = 0 \]

12296

\[ {} y^{\prime \prime } = 0 \]

12297

\[ {} y^{\prime \prime }+y = 0 \]

12301

\[ {} -y+y^{\prime \prime } = 0 \]

12304

\[ {} y^{\prime \prime }+l y = 0 \]

12305

\[ {} y^{\prime \prime }+\left (a x +b \right ) y = 0 \]

12306

\[ {} y^{\prime \prime }-\left (x^{2}+1\right ) y = 0 \]

12307

\[ {} y^{\prime \prime }-\left (x^{2}+a \right ) y = 0 \]

12308

\[ {} y^{\prime \prime }-\left (a^{2} x^{2}+a \right ) y = 0 \]

12309

\[ {} y^{\prime \prime }-c \,x^{a} y = 0 \]

12310

\[ {} y^{\prime \prime }-\left (a^{2} x^{2 n}-1\right ) y = 0 \]

12311

\[ {} y^{\prime \prime }+\left (a \,x^{2 c}+b \,x^{c -1}\right ) y = 0 \]

12312

\[ {} y^{\prime \prime }+\left ({\mathrm e}^{2 x}-v^{2}\right ) y = 0 \]

12313

\[ {} a \,{\mathrm e}^{b x} y+y^{\prime \prime } = 0 \]

12314

\[ {} y^{\prime \prime }-\left (4 a^{2} b^{2} x^{2} {\mathrm e}^{2 b \,x^{2}}-1\right ) y = 0 \]

12315

\[ {} y^{\prime \prime }+\left (a \,{\mathrm e}^{2 x}+b \,{\mathrm e}^{x}+c \right ) y = 0 \]

12316

\[ {} y^{\prime \prime }+\left (a \cosh \left (x \right )^{2}+b \right ) y = 0 \]

12317

\[ {} y^{\prime \prime }+\left (a \cos \left (2 x \right )+b \right ) y = 0 \]

12318

\[ {} y^{\prime \prime }+\left (a \cos \left (x \right )^{2}+b \right ) y = 0 \]

12319

\[ {} y^{\prime \prime }-\left (1+2 \tan \left (x \right )^{2}\right ) y = 0 \]

12320

\[ {} y^{\prime \prime }-\left (\frac {m \left (m -1\right )}{\cos \left (x \right )^{2}}+\frac {n \left (n -1\right )}{\sin \left (x \right )^{2}}+a \right ) y = 0 \]

12321

\[ {} y^{\prime \prime }-\left (n \left (n +1\right ) k^{2} \operatorname {JacobiSN}\left (x , k\right )^{2}+b \right ) y = 0 \]

12322

\[ {} y^{\prime \prime }-\left (f \left (x \right )^{2}+f^{\prime }\left (x \right )\right ) y = 0 \]

12323

\[ {} y^{\prime \prime }+y^{\prime }+a \,{\mathrm e}^{-2 x} y = 0 \]

12324

\[ {} y^{\prime \prime }-y^{\prime }+y \,{\mathrm e}^{2 x} = 0 \]

12325

\[ {} b y+a y^{\prime }+y^{\prime \prime } = 0 \]

12327

\[ {} y^{\prime \prime }+a y^{\prime }-\left (b^{2} x^{2}+c \right ) y = 0 \]

12328

\[ {} y^{\prime \prime }+2 a y^{\prime }+f \left (x \right ) y = 0 \]

12329

\[ {} y+x y^{\prime }+y^{\prime \prime } = 0 \]

12330

\[ {} -y+x y^{\prime }+y^{\prime \prime } = 0 \]

12331

\[ {} y^{\prime \prime }+x y^{\prime }+\left (n +1\right ) y = 0 \]

12332

\[ {} y^{\prime \prime }+x y^{\prime }-n y = 0 \]

12333

\[ {} 2 y-x y^{\prime }+y^{\prime \prime } = 0 \]

12334

\[ {} -a y-x y^{\prime }+y^{\prime \prime } = 0 \]

12335

\[ {} y^{\prime \prime }-x y^{\prime }+\left (x -1\right ) y = 0 \]

12336

\[ {} y^{\prime \prime }-2 x y^{\prime }+a y = 0 \]

12337

\[ {} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+2\right ) y = 0 \]

12338

\[ {} y^{\prime \prime }-4 x y^{\prime }+\left (3 x^{2}+2 n -1\right ) y = 0 \]

12340

\[ {} y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-2\right ) y = 0 \]

12342

\[ {} b y+a x y^{\prime }+y^{\prime \prime } = 0 \]

12343

\[ {} y^{\prime \prime }+2 a x y^{\prime }+a^{2} x^{2} y = 0 \]

12344

\[ {} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (c x +d \right ) y = 0 \]

12345

\[ {} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (\operatorname {a1} \,x^{2}+\operatorname {b1} x +\operatorname {c1} \right ) y = 0 \]

12346

\[ {} x y-x^{2} y^{\prime }+y^{\prime \prime } = 0 \]

12347

\[ {} y^{\prime \prime }-x^{2} y^{\prime }-\left (1+x \right )^{2} y = 0 \]

12348

\[ {} y^{\prime \prime }-x^{2} \left (1+x \right ) y^{\prime }+x \left (x^{4}-2\right ) y = 0 \]

12349

\[ {} -x^{3} y+x^{4} y^{\prime }+y^{\prime \prime } = 0 \]

12350

\[ {} y^{\prime \prime }+a \,x^{-1+q} y^{\prime }+b \,x^{q -2} y = 0 \]

12352

\[ {} y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = 0 \]

12355

\[ {} y^{\prime \prime }+2 n y^{\prime } \cot \left (x \right )+\left (-a^{2}+n^{2}\right ) y = 0 \]

12356

\[ {} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+y \cos \left (x \right )^{2} = 0 \]

12357

\[ {} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }-y \cos \left (x \right )^{2} = 0 \]

12358

\[ {} y^{\prime \prime }+\cot \left (x \right ) y^{\prime }+v \left (v +1\right ) y = 0 \]

12359

\[ {} y^{\prime \prime }-\cot \left (x \right ) y^{\prime }+\sin \left (x \right )^{2} y = 0 \]

12360

\[ {} b y+a \tan \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

12361

\[ {} \left (-a^{2}+b^{2}\right ) y+2 a \cot \left (a x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

12362

\[ {} y^{\prime \prime }+f \left (x \right ) y^{\prime }+\left (\frac {f \left (x \right )^{2}}{4}+\frac {f^{\prime }\left (x \right )}{2}+a \right ) y = 0 \]

12363

\[ {} y^{\prime \prime }-\frac {a f^{\prime }\left (x \right ) y^{\prime }}{f \left (x \right )}+b f \left (x \right )^{2 a} y = 0 \]

12364

\[ {} y^{\prime \prime }-\left (\frac {f^{\prime }\left (x \right )}{f \left (x \right )}+2 a \right ) y^{\prime }+\left (\frac {a f^{\prime }\left (x \right )}{f \left (x \right )}+a^{2}-b^{2} f \left (x \right )^{2}\right ) y = 0 \]

12365

\[ {} y^{\prime \prime }-\left (\frac {2 f^{\prime }\left (x \right )}{f \left (x \right )}+\frac {g^{\prime \prime }\left (x \right )}{g^{\prime }\left (x \right )}-\frac {g^{\prime }\left (x \right )}{g \left (x \right )}\right ) y^{\prime }+\left (\frac {f^{\prime }\left (x \right ) \left (\frac {2 f^{\prime }\left (x \right )}{f \left (x \right )}+\frac {g^{\prime \prime }\left (x \right )}{g^{\prime }\left (x \right )}-\frac {g^{\prime }\left (x \right )}{g \left (x \right )}\right )}{f \left (x \right )}-\frac {f^{\prime \prime }\left (x \right )}{f \left (x \right )}-\frac {v^{2} {g^{\prime }\left (x \right )}^{2}}{g \left (x \right )^{2}}+{g^{\prime }\left (x \right )}^{2}\right ) y = 0 \]

12366

\[ {} y^{\prime \prime }-\left (\frac {g^{\prime \prime }\left (x \right )}{g^{\prime }\left (x \right )}+\frac {\left (2 v -1\right ) g^{\prime }\left (x \right )}{g \left (x \right )}+\frac {2 h^{\prime }\left (x \right )}{h \left (x \right )}\right ) y^{\prime }+\left (\frac {h^{\prime }\left (x \right ) \left (\frac {g^{\prime \prime }\left (x \right )}{g^{\prime }\left (x \right )}+\frac {\left (2 v -1\right ) g^{\prime }\left (x \right )}{g \left (x \right )}+\frac {2 h^{\prime }\left (x \right )}{h \left (x \right )}\right )}{h \left (x \right )}-\frac {h^{\prime \prime }\left (x \right )}{h \left (x \right )}+{g^{\prime }\left (x \right )}^{2}\right ) y = 0 \]